AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit

For Professional Use Only

Instruction Manual

KEY TO SYMBOLS USED

REF	Catalogue number	<u> </u>	Caution
LOT	Batch code	\sum	Contains sufficient for <n> tests</n>
IVD	In vitro diagnostic medical device	23	Use-by-date
VER	Version	I	Consult instructions for use
	Temperature limit	**	Keep away from sunlight
	Manufacturer	NCA	Negative control of amplification
\sim	Date of manufacture	C-	Negative control of extraction
EC REP	Authorized representative in the European Community	C+Shigella / Salmonella, C+Campylobacter /STI	Positive controls of amplification
EIEC	Enteroinvasive E.coli	IC	Internal control

1. INTENDED USE

AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit is an *in vitro* nucleic acid amplification test for qualitative detection and differentiation of DNA of Shigella species (Shigella spp.) and enteroinvasive E.coli (EIEC), Salmonella species (Salmonella spp.), and thermophilic Campylobacter species (Campylobacter spp.) in environmental samples and clinical material using real-time hybridization-fluorescence detection of amplified products. The PCR kit does not differentiate enteroinvasive *E.coli* (*EIEC*) and *Shigella* spp. microorganisms. It is associated with the location of the target gene on the plasmid and the exchange ability of the microorganisms. Bacteriological methods should be used for the differentiation of *EIEC* and *Shigella* spp. microorganisms.

The results of PCR analysis are taken into account in complex diagnostics of

2. PRINCIPLE OF PCR DETECTION

Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp. detection by the polymerase chain reaction (PCR) is based on the amplification of the pathogen genome specific region using specific Shigella spp. and EIEC, Salmonella spp., and Campylobacter spp. primers. In real-time PCR, the amplified product is detected with the use of fluorescent dyes. These dyes are linked to oligonucleotide probes which bind specifically to the amplified product during thermocycling. The real-time monitoring of fluorescence intensities during the real-time PCR allows the detection of accumulating product without re-opening the reaction tubes after the PCR run.

AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit is a qualitative test that contains the Internal Control (Internal Control-FL (IC)). It must be used in the extraction procedure in order to control the extraction process of each individual sample and to identify possible reaction inhibition.

AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit uses "hot-start", which greatly reduces the frequency of nonspecifically primed reactions. "Hot-start" is guaranteed by separation of nucleotides and Taq-polymerase by using a chemically modified polymerase (TaqF). The chemically modified polymerase (TaqF) is activated by heating at 95 $^{\circ}\text{C}$ for 15 min.

The results of amplification are registered in the following fluorescence channels:

Channel for fluorophore	FAM	JOE	
Name of PCR-mix	DNA-target		
PCR-mix-1-FEP/FRT Shigella spp. / Salmonella spp.	Shigella spp. DNA	Salmonella spp. DNA	
PCR-mix-1-FEP/FRT Campylobacter spp. / STI	Campylobacter spp. DNA	Internal Control DNA	
Name of PCR-mix	Target gene		
PCR-mix-1-FEP/FRT Shigella spp. / Salmonella spp.	Ipa H (invasion plasmid antigen)	Ttr (thiocyanate reductase gene)	
PCR-mix-1-FEP/FRT Campylobacter spp. / STI	23SrRNA	Artificially synthesized sequence	

3. CONTENT

AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR

variant FRT-50 F REF R-B44(RG,iQ)-CE

Reagent	Description	Volume, ml	Quantity
PCR-mix-1-FEP/FRT Shigella spp. / Salmonella spp.	clear liquid from colorless to light lilac colour	0.6	1 tube
PCR-mix-1-FEP/FRT Campylobacter spp. / STI	clear liquid from colorless to light lilac colour	0.6	1 tube
PCR-mix-2-FRT	colorless clear liquid	0.3	2 tubes
Polymerase (TaqF)	colorless clear liquid	0.02	2 tubes
DNA-buffer	colorless clear liquid	0.5	1 tube
Positive Control DNA Shigella sonnei / Salmonella (C+Shigella / Salmonella)	colorless clear liquid	0.1	1 tube
Positive Control DNA Campylobacter jejuni / STI (C+Campylobacter /STI)	colorless clear liquid	0.1	1 tube
Negative Control (C-)*	colorless clear liquid	1.6	1 tube
Internal Control-FL (IC)**	colorless clear liquid	1.0	1 tube
RNA-eluent***	colorless clear liquid	1.2	5 tubes

- must be used in the extraction procedure as Negative Control of Extraction.
- ** add 10 µl of Internal Control-FL (IC) during the DNA extraction procedure directly to the sample/lysis mixture (see DNA-sorb-B REF K1-2-50-CE, RIBO-prep REF K2-9-Et-50-CE).
- must be used in the extraction procedure.

Variant FRT-50 F is intended for 55 reactions (including controls).

4. ADDITIONAL REQUIREMENTS

- DNA extraction kit.
- Disposable powder-free gloves and laboratory coat.
- Pipettes (adjustable).
- Sterile pipette tips with aerosol barriers (up to 20 and up to 200 µl).
- Tube racks.
- Vortex mixer
- Desktop centrifuge with a rotor for 2-ml reaction tubes
- PCR box.
- Real-time instruments (for example, Rotor-Gene 3000/6000 (Corbett Research, Australia), iCycler iQ or iCycler iQ5 (Bio-Rad, USA), or equivalent).
- Disposable polypropylene PCR tubes (0.1- or 0.2-ml) when working with PCR kit variant FRT-50 F: a) 0.2-ml PCR tubes with optical transparent domed or flat caps if a plate-type
- instrument is used:
- b) 0.2-ml PCR tubes with flat caps or strips of four 0.1-ml Rotor-Gene PCR tubes if a rotor-type instrument is used.
- Deep-freezer at the temperature from minus 24 to minus 16 °C. Reservoir for used tips.

5. GENERAL PRECAUTIONS

The user should always pay attention to the following:

- Use sterile pipette tips with aerosol filters and use a new tip for every procedure.
- Store all extracted positive material (specimens, controls and amplicons) away from all other reagents and add it to the reaction mix in a distantly separated facility.
- Thaw all components thoroughly at room temperature before starting an assay
- When thawed, mix the components and centrifuge briefly.
- Use disposable protective gloves and laboratory cloths, and protect eyes while samples and reagents handling. Thoroughly wash hands afterwards
- Do not eat, drink, smoke, apply cosmetics, or handle contact lenses in laboratory work
- Do not use a kit after its expiration date.
- Dispose of all specimens and unused reagents in accordance with local regulations.
- Samples should be considered potentially infectious and handled in biological cabinet in compliance with appropriate biosafety practices.
- Clean and disinfect all samples or reagents spills using a disinfectant, such as 0.5 % sodium hypochlorite or another suitable disinfectant.
- Avoid inhalation of vapors, samples and reagents contact with the skin, eyes, and mucous membranes. Harmful if swallowed. If these solutions come into contact, rinse the injured area immediately with water and seek medical advice if necessary. Safety Data Sheets (SDS) are available on request.
- Use of this product should be limited to personnel trained in DNA amplification techniques.
- Workflow in the laboratory must be one-directional, beginning in the Extraction Area and moving to the Amplification and Detection Area. Do not return samples, equipment and reagents in the area where the previous step was performed.

Some components of this kit contain sodium azide as a preservative. Do not use metal tubing for reagent transfer.

6. SAMPLING AND HANDLING

Obtaining samples of biological materials for PCR-analysis, transportation and NOTE: storage are described in the manufacturer's handbook [1]. It is recommended that this handbook is read before starting work

AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit is intended for the analysis of DNA extracted with DNA extraction kits from the environmental samples (concentrated water samples) and clinical material (faeces

Concentrated water samples are used without treatment.

NOTE: The clinical material must be taken according to state and local authorities' requirements

NOTE: Liquid feces can be used without the suspension preparation stage

7. WORKING CONDITIONS

AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit should be used at 18–25 $^{\circ}\text{C}.$

8. PROTOCOL

8.1. DNA extraction

It is recommended to use the following nucleic acid extraction kits:

• DNA-sorb-B, REF K1-2-50-CE.

- RIBO-prep, REF K2-9-Et-50-CE.

The DNA extraction of each test sample is carried out in the presence of Internal Control-

NOTE: Extract DNA according to the manufacturer's instructions

NOTE: Use the RNA-eluent only from this kit in the procedure of DNA extraction

8.2. Preparing PCR

NOTE:

The total reaction volume is 25 μ I, the volume of the DNA sample is 10 μ I.

8.2.1 Preparing tubes for PCR

Use disposable filter tips for adding reagents, DNA and control samples into tubes.

calculating for the required number of reactions (test and control samples) according to Table 1. Note that even for analysis of one test or control DNA sample, it is necessary to carry out all controls of the amplification stage: positive control of amplification (C+), negative control of amplification (NCA). It is recommended to mix the reagents for an even reaction number to ensure more

Reaction mixture components should be mixed just before analysis with

exact dosage. 1. Take the required number of tubes for amplification of DNA extracted from test and control samples. The type of tubes depends on the PCR instrument used for analysis. To prepare the reaction mixture, mix PCR-mix-1 (PCR-mix-1-FEP/FRT Shigella spp. /

Salmonella spp. or PCR-mix-1-FEP/FRT Campylobacter spp. (STI) with PCR-mix-2-FRT and polymerase (TaqF) (see Table 2). Thoroughly vortex the mixture, make sure that there are no drops on the caps of the tubes.

Scheme of reaction mixture preparation					
	Scheme		ne for specified num (µI)	ber of reactions	
Reagent volu reactio		10.00	5.00	0.50	
Number of test samples	Number of reactions ¹	PCR-mix-1- FEF/FRT	PCR-mix-2-FRT	Polymerase (TaqF)	
2	6	60	30	3.0	
4	8	80	40	4.0	
6	10	100	50	5.0	
8	12	120	60	6.0	
10	14	140	70	7.0	
12	16	160	80	8.0	
14	18	180	90	9.0	
16	20	200	100	10.0	
18	22	220	110	11.0	
20	24	240	120	12.0	
22	26	260	130	13.0	
24	28	280	140	14.0	
26	30	300	150	15.0	
28	32	320	160	16.0	

Transfer 15 µI of the prepared reaction mixture to each PCR tube.

Using tips with aerosol filter, add 10 μI of DNA samples obtained at the DNA extraction stage to the prepared tubes. Dispose of the unused reaction mixture.

Carry out the control amplification reactions:

C-

Add 10 µl of DNA-buffer to the tube labeled NCA (Negative Control of Amplification).

Add 10 µl of Positive Control DNA Shigella sonnei / Salmonella to C+Shigella the tube labeled C+ $_{Shgella}$ / $_{Salmonella}$ (Positive Control of Amplification) for PCR-mix-1-FEP/FRT Shigella spp. / Salmonella spp. Add 10 μ l of Positive Control DNA Campylobacter jejuni / STI to

the tube labeled C+Carapylobacter /STI (Positive Control of Amplification) for PCR-mix-1-FEP/FRT Campylobacter spp. / STI. /STI

Add 10 µI of the sample extracted from the **Negative Control** reagent to the tube labeled C- (Negative control of Extraction).

Avoid transferring sorbent together with the DNA sample in case of extraction by NOTE: DNA-sorb-B kit.

¹ Number of test samples plus the control of DNA extraction, two controls of amplification, and one extra reaction (N+1+2+1, N is the number of test samples).

8.2.2. Amplification

Create a temperature profile on your instrument as follows:

Table 3a

	Amplification program for rotor-type instruments ²					
Step	Temperature, °C	Time	Fluorescence detection	Cycles		
1	95	15 min	-	1		
	95	10 s	-			
2	60	25 s	FAM/Green, JOE/Yellow	45		
	72	10 s	_			

Table 3b

Amplification program for plate-type instruments				
Step	Temperature, °C	Time	Fluorescence detection	Cycles
1	95	15 min	-	1
	95	10 s	-	
2	60	25 s	FAM, JOE	45
	72	10 s	_	

Fluorescent signal is detected in the channels for the FAM and JOE fluorophores

- Adjust the fluorescence channel sensitivity according to *Important Product Information Bulletin* and Guidelines [2].
- Insert tubes into the reaction module of the device.
 Run the amplification program with fluorescence detection.
- Analyze results after the amplification program is completed.

9. DATA ANALYSIS

Analysis of results is performed by the software of the real-time PCR instrument used by measuring fluorescence signal accumulation in the channels for FAM and JOE fluorophores

Table 4

Detection channels and the pathogens correspondence table

The channel for the fluorophore	PCR-mix-1-FEP/FRT Shigella spp. / Salmonella spp.	PCR-mix-1-FEP/FRT Campylobacter spp. / STI
FAM	Shigella spp. DNA	Campylobacter spp. DNA
JOE	Salmonella spp. DNA	Internal Control-FL (IC)

Results are interpreted by the crossing (or not-crossing) the fluorescence curve with the threshold line set at the specific level that corresponds to the presence (or absence) of a Ctvalue of the DNA sample in the corresponding column of the results grid. The principle of interpretation is given in Table 5.

Table 5

Interpretation of results for PCR-analysis					
The channel for fluorophore	PCR-mix-1 FEP/FRT Shigella spp. / Salmonella spp.	PCR-mix-1-FEP/FRT Campylobacter spp. / STI			
FAM	< boundary value Shigella spp. DNA is detected	< boundary value Campylobacter spp. DNA is detected			
FAM	absent or > boundary value Shigella spp. DNA is not detected ⁴	absent or > boundary value Campylobacter spp. DNA is not detected ⁴			
IOE	< boundary value Salmonella spp. DNA is detected	< boundary value results are valid			
JOE	absent or > boundary value Salmonella spp. DNA is not detected ⁴	absent or > boundary value results are invalid ⁵			

Boundary Ct values are specified in the Important Product Information Bulletin enclosed to the PCR kit. See also Guidelines [2] NOTE:

The result of the analysis is considered reliable only if the results obtained for Positive and Negative Controls of amplification as well as for the Negative Control of extraction are correct (see Table 6).

Table 6 Describe for exercise

PCR-mix-1	Control	Stage for control	Ct value in the channel for fluorophore	
			FAM	JOE
PCR-mix-1-FEP/FRT	C-	DNA extraction	absent or > boundary value	absent or > boundary value
Shigella spp. / Salmonella spp.	NCA	PCR	absent or > boundary value	absent or > boundary value
	C+ _{Shigella} /Salmonella	PCR	< boundary value	< boundary value
DCD wit 4 FED/FDT	c	DNA extraction	absent or > boundary value	< boundary value
PCR-mix-1-FEP/FRT Campylobacter spp. / STI	NCA	PCR	absent or > boundary value	absent or > boundary value
311	C+ _{Campy} - lobacter/STI	PCR	< boundary value	< boundary value

10. TROUBLESHOOTING

- Results of analysis are not taken into account in the following cases:

 1. If the Ct value determined for the Positive Control of Amplification (C+) in the channels for the FAM or JOE fluorophores is greater than the boundary Ct value, the amplification and detection should be repeated for all samples in which the Ct value in the channels for FAM and JOE fluorophores was greater than the boundary Ct value for required PCR-mix-1.
- 2. If the Ct value determined for the Negative Control of Extraction (C-) (except the channel for JOE fluorophore for PCR-mix-1 FEP/FRT Campylobacter / STI) and/or Negative Control of Amplification (NCA) in the channels for the FAM or JOE fluorophores is less than the boundary Ct value, the PCR analysis (beginning with the DNA extraction stage) should be repeated for all samples in which DNA of respective pathogen was detected.

If you have any further questions or if you encounter problems, please contact our Authorized Representative in the European Community.

⁴ If the *Ct* value determined for PCR-mix-1-FEP/FRT *Campylobacter* spp. / STI in the channel for the JOE fluorophore is less than the boundary value.

5 If the Ct value for PCR-mix-1-FEP/FRT Campylobacter spp. / STI in the channel for the JOE fluorophore is absent or greater than the boundary value, the negative result using other PCR-mix-1 is invalid. The PCR analysis should be repeated (starting from the DNA extraction stage) for such test sampl

² For example, Rotor-Gene 3000 or Rotor-Gene 6000.

For example, iQ5 or Mx3000P

11. TRANSPORTATION

AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit should be transported at 2–8 °C for no longer than 5 days.

12. STABILITY AND STORAGE

All components of the AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit are to be stored at 2-8 °C when not in use (except for PCR-mix-1 FEP/FRT Shigella spp. / Salmonella spp., PCR-mix-1-FEP/FRT Campylobacter spp. / STI, PCR-mix-2-FRT and polymerase (TaqF)). All components of the AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit are stable until the expiry date on the label. The shelf life of reagents before and after the first use is the same, unless otherwise stated.

NOTE:

PCR-mix-1 FEP/FRT Shigella spp. / Salmonella spp., PCR-mix-1-FEP/FRT Campylobacter spp. / STI, PCR-mix-2-FRT, and polymerase (TaqF) are to be stored at temperature from minus 24 to minus 16 °C when not in use. PCR-mix-1-FEP/FRT Campylobacter spp. / STI and PCR-mix-1-FEP/FRT Shigella spp. / Salmonella spp. are to be kept away from light.

NOTE:

13. SPECIFICATIONS

13.1 Sansitivity

13.1. Sensitivity					
Pathogen	Test material	DNA extraction kit	PCR kit	Analytical sensitivity, GE/ml ⁶	
Shigella spp. and enteroinvasive E.coli (EIEC)			PCR kit		
Salmonella spp.	feces	RIBO-prep	Variant FRT-50 F	1x10 ³	
Campylobacter spp.			FR1-50 F		

13.2. Specificity

The analytical specificity of AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit is ensured by selection of specific primers and probes as well as stringent reaction conditions. The primers and probes were checked for possible homologies to all sequences deposited in gene banks by sequence comparison analysis. Nonspecific responses were absent during examination of human DNA as well as a DNA panel of the following microorganisms:

GISK collection: Enterovirus strains (Coxsakie B1, B2, B3, B4, B5, and B6; Polio (Sabin) I, II, and III). Adenovirus serogroups 5 and 7; Influenza virus A (H13N2, H9N2, H8N4, H2N3, H4N6, H11N6, H12N5, H3N8, H1N1, H6N2, H10N7, and H5N1) and B; Rhinovirus; RS viruses; and human Adenovirus types 3, 5, 7, 37, and 40.

VGNKI collection: Salmonella enteritidis S-6, S.choleraesuis 370, S.typhimurium 371, S.dublin 373, S.typhi C1, S.abortusovis 372, and S.gallinarum-pullorum; Shigella flexneri 851b; Campylobacter fetus ssp. fetus 25936 and C.jejuni ssp. jejuni 43435; Clebsiella K 65 SW4; Listeria monocitogenes USKHCH 19 and L.monocitogenes USKHCH 52; Proteus

SW4; Listeria monocitogenes USRHCH 19 and Limonocitogenes USRHCH 52; Proteus vulgaris 115/98; Pseudomonas aeruginosa DN c1; Staphilococcus aureus 653 and S. aureus 29112; Morganella morganii 619 c 01; and Enterobacter fecalis 356. Center for Disease Control and Prevention (CDC, USA) collection: 44 isolates of Norovirus genotype 1 and 2 different gene clusters; 40 strains of different rotavirus [P]G types, 19 strains of Astrovirus serotypes 1, 2, 4, 5, and 8; and 15 strains of different Adenovirus types and the following bacterial strains (see Table 7).

Panel of bacterial pathogens (CDC, USA)				
Strain ID	Organism	Strain ID	Organism	
K2033	Salmonella ser.Grumpensis	K2015	Salmonella ser.Oranienburg	
K1806	Salmonella ser.Newport	AM01144	Salmonella ser.Newport	
K2077	Salmonella ser. Enteriditis	K1810	Salmonella ser.Anatum	
83-99	Salmonella ser.Typhimurium	K1991	Salmonella ser.Typhimurium	
PS505	Shigella boydii	K1898	Salmonella ser.Heidelberg	
PS408	Shigella sonnei	PS555	Shigella boydii	
B4003	Shigella sonnei	F6446	Shigella dysenteriae	
PS801	Shigella dysenteriae	S821X1	Shigella dysenteriae type 1	
C898	Shigella dysenteriae type1	S177X1	Shigella dysenteriae type 1	
F2035	Shigella flexneri	S3314	Shigella dysenteriae type 2	
E2539-C1	Enterotoxigenic Escherichia coli (ETEC)	PS071	Shigella flexneri	
H10407	Enterotoxigenic Escherichia coli (ETEC)	PS050	Shigella flexneri	
F1008	Enterotoxigenic Escherichia coli (ETEC)	F7862	Shigella flexneri	
EDL 933	Shiga-toxin E.coli (STEC)	TX1	Enterotoxigenic Escherichia coli (ETEC)	
3543-01	Shiga-toxin E.coli (STEC)	3525-01	Shiga-toxin Escherichia coli (STEC)	
4752-71	Proteus vulgaris	25922	Escherichia coli O6:H1	
QA/QC	Citrobacter freundii	621-64	Citrobacter freundii	
QA/QC	Aeromonas spp.	3910-68	Aeromonas spp.	
3043-74	Serratia marcescens	E9113	Vibrio cholerae	
QA/QC	Serratia marcescens	501-83	Edwardsiella spp.	
F7894	Vibrio vulnificus	587-82	Providencia stuartii	
F8515	Yersinia enterocolitica	27853	Pseudomonas aeruginosa	
F8510	Yersinia enterocolitica	D4989	Helicobacter cineadi	
K4299	Vibrio parahaemolyticus	D6827	Helicobacter pullorum	
F9835	Vibrio parahaemolyticus	D5127	Helicobacter pylori	
K2023	Salmonella Ser. Kentucky	D2686	Arcobacter butzleri	
K1684	Salmonella O-1, 4, 12 gr. B	-	-	

The clinical specificity of AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit was confirmed in laboratory clinical trials.

14. REFERENCES

- 14. REFERENCES

 Handbook "Sampling, Transportation, and Storage of Clinical Material for PCR Diagnostics", developed by Federal Budget Institute of Science "Central Research Institute for Epidemiology" of Federal Service for Surveillance on Consumers' Rights Protection and Human Well-Being.
 Guidelines to the AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit for qualitative detection and differentiation of Shigella species (Shigella spp.) and enteroinvasive Ecoli (EIEC), Salmonella species (Salmonella spp.), and thermophilic Campylobacter species (Campylobacter spp.) DNA in environmental samples and clinical material by the polymerase chain reaction (PCR) with real-time hybridization-fluorescence detection developed by Federal Budget Institute of Science "Central Research Institute for Epidemiology".

15. QUALITY CONTROL

In compliance with Federal Budget Institute of Science "Central Research Institute for Epidemiology" ISO 13485-Certified Quality Management System, each lot of the AmpliSens® Shigella spp. and EIEC / Salmonella spp. / Campylobacter spp.-FRT PCR kit has been tested against predetermined specifications to ensure consistent product quality.

List of Changes Made in the Instruction Manual

List of Changes wade in the instruction wanual			
VER	Location of changes	Essence of changes	
26.06.11 LA	Cover page, text	The name of Institute was changed to Federal Budget Institute of Science "Central Research Institute for Epidemiology"	
	Text	Corrections according to the template. Grammar corrections	
	8.1. DNA extraction	Additions about carrying out the control of extraction	
02.04.15 PM	8.2.1. Preparing tubes for PCR	Scheme of reaction mixture preparation was added from Appendix 1	
	9. Data analysis	The sections were rewritten	
	10. Troubleshooting		
13.03.19 EM	3. Content	The colour of the reagents was specified	
	Through the text	The text formatting was changed	
20.05.20 EM	Footer	The phrase "Not for use in the Russian Federation" was added	
2141	Principle of PCR detection	The table with targets was added	
11.03.21 MM	_	The name, address and contact information for Authorized representative in the European Community was changed	
20.07.21 EM	1. Intended use	The information about the inability of the PCR kit for microorganism differentiation and the use of bacteriological methods was added	

AmpliSens®

Ecoli Dx, s.r.o., Purkyňova 74/2 110 00 Praha 1, Czech Republic Tel.: +420 325 209 912 Cell: +420 739 802 523

Federal Budget Institute of Science "Central Research Institute for Epidemiology' 3A Novogireevskaya Street Moscow 111123 Russia

⁶ Genome equivalents of microorganism per 1 ml of the sample.