## GUIDELINES

## to AmpliSens ${ }^{\circledR}$ HPV HCR screen-titre-FRT PCR kit

for qualitative and quantitative detection of high carcinogenic risk (HCR) human papillomaviruses (HPV) types 16, 18, 31, 33, 35, 39,
$45,51,52,56,58,59$ DNA in the clinical material by the polymerase chain reaction (PCR) with real-time hybridizationfluorescence detection

## AmpliSens ${ }^{\circledR}$

Federal Budget Institute of Science "Central Research Institute for Epidemiology" 3A Novogireevskaya Street Moscow 111123 Russia

## TABLE OF CONTENTS

INTENDED USE ..... 3
AMPLIFICATION AND DATA ANALYSIS USING TWO-CHANNEL Rotor-Gene 3000 and Rotor-Gene 6000 (Corbett Research, Australia) INSTRUMENTS ..... 3
AMPLIFICATION AND DATA ANALYSIS USING iCycler iQ (Bio-Rad, USA) INSTRUMENT ..... 12
AMPLIFICATION AND DATA ANALYSIS USING Smart Cycler (Cepheid, USA) INSTRUMENT ..... 20
AMPLIFICATION AND DATA ANALYSIS USING FOUR-CHANNEL Rotor-Gene 3000 and Rotor-Gene 6000 (Corbett Research, Australia) INSTRUMENTS ..... 23
AMPLIFICATION AND DATA ANALYSIS USING iCycler iQ5 (Bio-Rad, USA) INSTRUMENT ..... 32
AMPLIFICATION AND DATA ANALYSIS USING Mx3000P (Stratagene, USA) INSTRUMENT ..... 37
AMPLIFICATION AND DATA ANALYSIS USING CFX96 (BIO-RAD, USA) ..... 45

## INTENDED USE

Guidelines describe the procedure of the use of AmpliSens ${ }^{\circledR}$ HPV HCR screen-titre-FRT PCR kit for qualitative and quantitative detection of high carcinogenic risk (HCR) human papillomaviruses (HPV) types $16,18,31,33,35,39,45,51,52,56,58,59$ DNA in the clinical material (cervical and urethral scrapes) by the polymerase chain reaction (PCR) with real-time hybridization-fluorescence detection using the following instruments:

- Two- and four-channel Rotor-Gene 3000, Rotor-Gene 6000 (Corbett Research, Australia);
- iCycler IQ, iCycler iQ5 (Bio-Rad, USA);
- Smart Cycler II (Cepheid, USA);
- Mx3000P (Stratagene, USA).


## AMPLIFICATION AND DATA ANALYSIS USING TWO-CHANNEL Rotor-Gene 3000 and Rotor-Gene 6000 (Corbett Research, Australia) INSTRUMENTS

Hereinafter, all the terms corresponding to different instruments and software are indicated in the following order: for Rotor-Gene 3000 / for Rotor-Gene 6000.

## Programming the thermocycler

1. Turn on the instrument, run the Rotor-Gene software.
2. For further automated result processing, select one of the variants of tube placement in the rotor of the device:

- Insert sequentially all tubes with HPV FRT A9 mixture from the $1^{\text {st }}$ one, then in the same order insert tubes with HPV FRT A7+ mixture;

NOTE: If less than 14 samples are studied (incomplete load of the carousel) insert tubes with HPV FRT A9 mixture from the 19 well of the rotor for providing adequate analysis of results.

- Insert tubes in pairs: HPV FRT A9 mixture and HPV FRT A7+ mixture for the first sample, HPV FRT A9 mixture and HPV FRT A7+ mixture for the second sample, etc... HPV FRT A9 mixture and HPV FRT A7+ mixture for DNA calibrator C1 HPV, HPV FRT A9 mixture and HPV FRT A7+ mixture for DNA calibrator C2 HPV, HPV FRT A9 mixture and HPV FRT A7+ mixture for DNA calibrator C3 HPV, HPV FRT A9 mixture and HPV FRT A7+ mixture for NCA (Negative Control of Amplification). If the carousel is not filled completely, balance it. To do this, fill the free wells with
NOTE: empty tubes (don't use tubes from previous experiments). Place any study tube (not an empty tube) to the well 1.

3. Insert the rotor into the instrument, close the lid.
4. Start amplification program. Use one of variants:

## Using the ready template for the run

NOTE: Usage of the template file AmpliSens FRT HR HPV Screen RG2x.ret during amplification is highly recommended.

For usage of the template file for the PCR kit, copy previously AmpliSens FRT HR HPV Screen RG2x.ret file, enclosed to the kit, to the Templates folder of the RotorGene program. The default location of this folder for the RotorGene is the following: C:|Program Files|RotorGene 6|Templates for Rotor-Gene 3000, and C:IProgram Files|RotorGene 6000 SoftwarelTemplates for Rotor-Gene 6000. After that, in the window New Run (called by the New button on the toolbar) the AmpliSens FRT HR HPV Screen RG2x item will appear. Select it to start new experiment.

Note: Template file can be opened from another folder as well. To do this, in the New Run window select Advanced tab, and there select the Open A Template In Another Folder...item, then switch to folder with the AmpliSens FRT HR HPV Screen RG2x.ret file.
Template file contains all the needed parameters of amplification; therefore one has only to enter the experiment data and designations of samples.

## Individual programming

1. Run the new run wizard in the Advanced tab.
2. Select the reaction volume $\mathbf{- 2 5} \boldsymbol{\mu l}$ and tick the $\mathbf{1 5} \boldsymbol{\mu}$ l oil layer volume option in the window opened after the window of rotor selecting.
3. Set the amplification program:

DNA amplification program for HCR HPV types 16, 18, 31, 33, 35; 39, 45, 51, 52, 56,58 , and 59

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Hold | 95 | 15 min | - | 1 |
| Hold2 | 65 | 2 min | - | 1 |
| Cycling | 95 | 20 s | - |  |
|  | Touchdown: <br> 1 deg. per cycle $/$ <br> Lower temperature of <br> each step on $1^{\circ} \mathrm{C}$ | 25 s | 5 |  |
|  | 65 | 55 s |  |  |
|  | 95 | 15 s | - | - |
|  | 60 | 25 s | 40 |  |

Note - AmpliSens FRT HR HPV Screen-titr RG2x Program.pro file in the RotorGene software format can be used for setting the amplification program.

The "AmpliSens-1 RG" universal program for DNA amplification and detection
NOTE: can also be used (see below). Any combination of the tests can be performed in one instrument simultaneously with the use of the unified amplification program (for example, combined with tests for STI pathogen DNA detection).

The analytical performance characteristics of the reagent kit do not change when the universal amplification program is used.

Amplification program "AmpliSens-1 RG"

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Hold | 95 | 15 min | - | 1 |
| Cycling | 95 | 5 s | - | 5 |
|  | 60 | 20 s | - |  |
|  | 72 | 15 s | - | 40 |
|  | 95 | 5 s | - |  |
|  | 60 | 20 s | FAM/Green, JOE/Yellow, <br> ROX/Orange, Cy5/Red |  |
|  | 72 | 15 s | - |  |

Note - The ROX/Orange and Cy5/Red channels are enabled when required if the "multiprime" format tests are performed.
4. Click the Calibrate/Gain Optimisation... button in the New Run Wizard window. In the opened window:
a) Perform the calibration in the FAM/Green, JOE/Yellow channels (click the Calibrate Acquiring/Optimise Acquiring button);
b) perform the calibration in the selected channels before the first detection (tick the Perform Calibration Before $1^{\text {st }}$ Acquisition/ Perform Optimisation Before $1^{\text {st }}$ Acquisition option);
c) for signal measurement optimisation for the selected channels set calibration from $\mathbf{4 F I}$ to $\mathbf{8 F I}$ for all the channels (the Edit button, the Auto gain calibration channel settings window).
5. Select the Start run button for amplification run.
6. Enter the data into the grid of the samples (it opens automatically after the amplification has been started). Enter the names/numbers of the test samples in the Name column. Analysis is performed with two tubes; therefore, for correct automatic analysis of results the both tubes of the sample must have the same name. Set the type Unknown opposite all the test samples including control samples. Set the type None for the cells matching with the corresponding empty tubes. Name calibrators as K1, K2, K3, Negative control of amplification as K-.
NOTE: Samples indicated as None won't be analysed.

## Data processing and analysis

Browse raw data of the device in two channels (FAM/Green, JOE/Yellow) selecting Cycling A... buttons on Channels panel. Take into account:

- Among all signals of samples on the channel at least one must be positive (positive signal have specific $S$-shaped fluorescence accumulation curve, see figure 1). If experiment is organized and performed correctly, signals of DNA calibrator C1 HPV, DNA calibrator C2 HPV, DNA calibrator C3 HPV must be obtained.
NOTE: If positive signals on fluorescence channel are completely absent, analysis of data on this channel may provide incorrect result.
- Presence of samples with background signal that differs significantly from majority of signals means the mistake of insertion of reaction mixture or DNA sample into the tube (see figure 2 b and the "Possible problems and errors" section).


## Difference in background signals of HPV FRT A9 mixture and HPV FRT A7+ mixture

 is allowed
## Data processing

1. Make sure that all the test samples are active in the legend at the right.
2. Activate the button Analysis in the menu, select the mode of the analysis Quantitation, activate the buttons Cycling A. FAM/Cycling A. Green, Show.
3. After opening the Quantitation analysis window set the threshold manually: Threshold $=0,03$.
4. Select the Linear scale. Select the Dynamic tube and Slope Correct buttons.
5. Choose the parameter More settings/Outlier Removal and set $15 \%$ for the value of negative samples threshold (NTC/Threshold).

In some rare cases due to the descend-type curves at the beginning of the experiment the threshold line can cross the fluorescence curves at the first
NOTE: cycles, and RotorGene program can record the crossing data as positive signal (see figure 7). To block this effect, use the Eliminate cycles before... option by setting 5 (crossing the threshold and the fluorescence curve at the first 5 cycles is ignored).
6. In the results grid (Quant. Results window); select the Name column by single click on the title. Copy the column selecting the Copy button from the right-click menu (figure 9).
7. Open Microsoft ${ }^{\circledR}$ Excel AmpliSens FRT HR HPV Screen RG2x Results Matrix.xIs file, enclosed to the reagent kit. Agree to enable macros.

Note - If macros is disable when opening Excel worksheet (the Results button is not activated), then security level should be changed. Select

## Tools>Macro>Security>Medium.

8. Set cursor on Name cell of Samples labeling column of Device data table, and select Insert command from the context menu (figure 10).
9. Similarly, select and copy Ct column from the results grid (Quant.Results). Set cursor in Excel table into $\mathbf{C t}$ cell under the name of fluorescent dye FAM/Green.
10. Repeat the procedure for fluorescent dye JOE/Yellow.
11.Set Quantitative analysis regimen with internal calibration.
11. Insert data on concentration of calibrators into the table Calibrator value according to Important Product Information Bulletin enclosed to the given lot of the PCR kit.
13.Check in the Samples labelling column, that DNA calibrator C1 HPV is named as K1, DNA calibrator C2 HPV is named as K2, DNA calibrator C3 HPV is named as K3 (without blank between letter K and number), and negative control is named as K or "-".
14.Save Microsoft ${ }^{\circledR}$ Excel file under different name.

## Data analysis

Data are analyzed automatically. When data are inserted into the Excel matrix, press Results button. In the Results column detected phylogenetic groups of HPV will appear, and the result: Positive (pos), negative (neg), weak positive (weak), non-valid (N/V).Then in the table number of human cells per reaction will appear; that is used for evaluation of validity of the sample. Then HPV DNA is calculated as log for $10^{5}$ of cells for each group, and total viral load. The last column contains probable explanation of clinical evaluation of result according the following:

| Result log (HPV DNA copies per <br> 100,000 cells) | Evaluation |
| :---: | :--- |
| $<3$ | Clinically insignificant value |
| $3-5$ | Clinically valuable. Dysplasia cannot be excluded; risk of <br> dysplasia. |
| $>5$ | Clinically valuable, of increased value. Dysplasia is highly <br> suggestive. |

To provide correct data processing, check that in the Name column:

- Tubes with different mixtures of the same sample have the same name;
- Positive controls are named as "+" or K+, and negative controls as "-"or K-.


## Possible problems and errors

It is recommended to read this chapter before PCR kit using.

| Possible problems | Reason | How to identify? | Suggested solutions |
| :---: | :---: | :---: | :---: |
| Negative samples are analyzed by Rotor-Gene software as positive | Incorrect mathematical processing of negative samples in the presence of the fluorescence decrease section at the initial cycles (see figures 2a, 8) | Typical positive sample has a characteristic S-shaped curve of fluorescence accumulation (see figures 1 , 3-6). Incorrect processed negative samples are viewed as pretty straight lines going upward (Fig. 8) | One must use the Ignore First by selecting the value 5 cycles. If it does not lead to a proper result, try to increase this value to 1-5 |
|  | Crossing the threshold line with downstream fluorescence curves in the initial cycles (see figure 7) | In the graph of processed fluorescence curves red threshold line (Threshold) crosses or "touches" fluorescence curves in the left side of the graph (first cycles) (see figure 7) | Use the function Eliminate cycles before ... by setting 5 (crossing the threshold and the fluorescence curve at the first 5 cycles is ignored) |
| Sensitivity decrease due to impurity of the instrument lenses | Impurity of lenses leads to lower efficiency of the excitation and fluorescence detection, which primarily affects to samples with small quantity of specific DNA, giving a small fluorescence increase | Low values of the background signal in all 4 detection channels (<1) at the maximum value of the multiplier gain (10) | Clean the instrument lenses at least 1 time per month |
| Sensitivity decrease due to the destruction of probes | Incorrect storage or use of the reagents (high temperature, repeated opening of the tubes with the mixes, work in "dirty" conditions) may lead to the destruction of oligonucleotides | Destruction of the probes may be identified only by comparing the experimental data at the beginning and after a certain time of reagents using or by comparing with the same lot of reagents stored adequately. It can be identified by decrease of automatically chosen multiplier gain coefficient value more than 2 units in different experiments (using the same instrument) <br> WARNING! Effect of increasing the multiplier gain can also be observed after cleaning the instrument lenses from heavy dirt | Use mixes stored in adequate conditions and with unexpired date (see the chapter "Stability and storage" in Instruction Manual) |
| Sensitivity decrease due to the decrease of polymerase (TaqF) activity | Incorrect storage of polymerase or violation of sterility conditions-leads to the enzyme destruction | It can be identified by signal absence of positive control or if $C t$ value for the positive control is greater than the threshold of the weak samples | Use adequately stored (see the chapter "Stability and storage" in Instruction Manual) or a new enzyme |

Note - The information about all set parameters of the experiment and the autocalibration report can be found by browsing the experiment settings (the Settings button). Particularly, Autocalibration Log Messages point in the Messages tab is the autocalibration report.

| Possible error | Characters | Way to eliminate |
| :--- | :--- | :--- |
| Contamination of the specific DNA | The signal is registered in any <br> channel in negative control | Repeat the experiment. Take <br> measures to detect and eliminate <br> the source of contamination |
| Less of DNA sample is added or <br> not added at all to the tube | Background signal greatly <br> exceeds other signals (seen on <br> untreated curves). The sample <br> is negative (See figure 2b) | Repeat the sample analysis |
| Less of reaction mixture is added <br> or not added at all or more of DNA <br> sample is added to the tube | Background signal is greatly less <br> than other signals (seen on <br> untreated curves). (figure 2b) | Repeat the analysis if the sample <br> is negative |
| Autocalibration parameter is not <br> set from 5FI to 10FI or an error in <br> first tube in rotor is present (tube is <br> absent, DNA sample or reaction <br> mixture is added incorrectly) | Most of fluorescence <br> background signals is less than <br> 1 or more than 20 | Set the parameter at the next <br> running. Repeat the experiment if <br> there is "overshoot" or the signal are <br> too weak (there is no positive <br> signals at processing, background is <br> less than 0.5) |
| Polymerase (TagF) is not added <br> during the reaction mixture <br> preparation | Any positive signal including the <br> positive control is not registered <br> in any sample. | Repeat the analysis with correctly <br> prepared mixes |

## EXAMPLES OF OBTAINED DATA

## Raw data

Figure 1 - Normal initial curves


Figure 2a - Initial curves with "bend" (fluorescence decrease at the initial cycles)


Figure 2 b - One of possible errors is viewed by background signal level: DNA sample was not added to tube 1, double quantity of DNA sample was added to the tube 2.


## Processed data

a) normal processed curves (typical S-shape, threshod line crosses the curves only in the area of fluorescence accomulation)

Figure 3 - Data on FAM/Green channel - internal control ( $\beta$-globin gene)


Figure 4 - Data on Cy5/Red channel


Figure 5 - Data on JOE/Yellow channel


Figure 6 - Data on ROX/Orange channel

b) incorrect curves processing

Figure 7 - Threshold line crosses twice the fluorescence curves


Figure 8 - Incorrect processing the curves with "bend" (from figure 2)


## Results analysis

Figure 9 - Results grid Quant.Results


Figure 10 - AmpliSens FRT HR HPV Screen RG2x Results Matrix.xls software for data analysis in Microsoft ${ }^{\circledR}$ Excel format


Device data

| №№ | Samples labelling | Fam <br> (IC) | Joe <br> (HPV) |
| :---: | :---: | :---: | :---: |
|  | Name | Ct | Ct |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |
| 4 |  |  |  |
| 5 |  |  |  |
| 6 |  |  |  |
| 7 |  |  |  |
| 8 |  |  |  |
| 9 |  |  |  |
| 10 |  |  |  |
| 11 |  |  |  |
| 12 |  |  |  |
| 13 |  |  |  |
| 14 |  |  |  |
| 15 |  |  |  |
| 16 |  |  |  |
| 17 |  |  |  |
| 18 |  |  |  |
| 19 |  |  |  |

Sequence of vials setting in device
sequentially all vials with mix A 9 , then all - with mix $\mathrm{A} 7+$

Calculation results

| №№ | Samples labelling | Results |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | branch A9 | branch A7, 51, 56 | general |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |
| * | * | * | * | * |

## AMPLIFICATION AND DATA ANALYSIS USING iCycler iQ (Bio-Rad, USA) <br> INSTRUMENT

## Programming the thermocycler

1. Turn on the instrument, start iQ iCycler program.
2. Set the tubes placement scheme in the plate and measurement of fluorescent signal in all tubes in the FAM and HEX channels in Plate Setup module. Save data.
3. Insert the tubes or strips into the reaction module of the thermocycler according to the plate setup.
4. Start for the iCycler iQ instrument the program AmpliSens FRT HR HPV Screen iQ (by selection or creation of this program in View Protocols module) with the preset plate setup (see tables below).

For installation of amplification program we recommend to use included file
NOTE: AmpliSens FRT HR HPV Screen iQ.tmo. Switch in the Library section to the View Protocol tab and then to the folder with the file, and activate it by one click on its name.

DNA amplification program for HCR HPV types 16, 18, 31, 33, 35; 39, 45, 51, 52, 56, 58, and 59

| Step | Temperature, ${ }^{\circ} \mathrm{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 95 | 15 min | - | 1 |
| 2 | 65 | 2 min | - | 1 |
| 3 | 95 | 20 s | - | 5 |
|  | $\begin{gathered} 64 \\ \text { Temp -: } \\ \text { 1.0 for a cycle } \end{gathered}$ | 25 s | - |  |
|  | 65 | 55 s | - |  |
| 4 | 95 | 20 s | - | 42 |
|  | 60 | 25 s | - |  |
|  | 65 | 55 s | FAM, HEX |  |

Note - If the instrument is not calibrated in the HEX channel, using the JOE channel is acceptable.

The "AmpliSens-1 iQ" universal program for DNA amplification and detection
NOTE:
can also be used. Any combination of the tests can be performed in one instrument simultaneously with the use of the unified amplification program (for example, combined with tests for STI pathogen DNA detection).
The analytical performance characteristics of the reagent kit do not change when the universal amplification program is used.

Amplification program "AmpliSens-1 iQ"

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 95 | 15 min | - | 1 |
| 2 | 95 | 5 s | - | 5 |
|  | 60 | 20 s | - |  |
|  | 72 | 15 s | - | - |
| 3 | 95 | 5 s |  |  |
|  | 60 | 30 s | FAM, HEX, ROX, Cy5 |  |
|  | 72 | 15 s | - |  |

Note - The ROX and Cy5 channels are enabled when required if the "multiprime" format tests are performed.
5. Before start of the program, in the window of the Run-Time Central module set the measurement of wells factors by the test tubes - under the Select well factor source line select Experimental Plate. The standard program for determination of wells factors is used (file dynamicwf.tmo: $95^{\circ} \mathrm{C}-\mathbf{3 0} \mathbf{~ s e c}$, then 2 cycles with fluorescence measurement: $95^{\circ} \mathrm{C}-\mathbf{3 0} \mathbf{~ s e c}$ )

## Insertion of tubes into the instrument

For the further automatic result processing, select one of the variants of tube placement into the device:

- Variant 1: Insert into the device pair of tubes corresponding to one clinical sample: first with HPV FRT A9 mixture, then with HPV FRT A7+ mixture. Then insert pair
corresponding to the next sample, etc.
- Variant 2 (reversal): Insert into the device pair of tubes corresponding to one clinical sample: first with HPV FRT A7+ mixture, then with HPV FRT A9 mixture. Then insert pair corresponding to the next sample, etc.

Pairs of tubes are inserted horizontally from left to right.
When inserting tubes, it is advisable not to use marginal wells, that is, to begin insertion of the tubes from the second well of the second row, and to finish with next to last well in next to last row. That means that one run will be performed with no more than 60 tubes.

Scheme 1
Insertion of the tubes into the device

6. When the tubes are inserted, close the device cover and press Begin Run, then name the file of results.

## Data processing and analysis

After the experiment we recommend to control raw data of the device in two channels (FAM, HEX/JOE). To do this, select displaying of information on one of the channels (the Select a Reporter window), then set the regiment of displaying (Select Analysis Mode): Background subtracted.

Among all signals of samples on the channel at least one must be positive (positive signal have specific S-shaped fluorescence accumulation curve). If experiment is organized and performed correctly, signals of positive control must be obtained.

If positive signals of fluorescent channel are completely absent, processing of data on this channel can provide incorrect result.

## Data processing

Return to the regimen of data displaying PCR Base Line Subtracted Curve Fit.

1. Check displaying of all samples for analysis. (Images of all wells for analysis in the Select Well window must be blue).
2. Select the Fam-490 channel in the Select Reporter module.
3. Set the Baseline cycle parameter as User defined in the module Threshold Cycle REF R-V31-T-2x(RG,iQ,SC)-CE, REF R-V31-T-4x(RG, iQ,Mx)-CE / VER: 05.12.19-25.03.21 / Page 14 of 49

Calculations, Baseline cycles " 2 " through " 10 ". Usually before this parameter is set, fluorescence curves on FAM channel are displayed somewhat incorrect, that is, are thrown over (initial and final parts are intensity descent, and not horizontal, see figure 15).
4. Set automatic selection of threshold: Threshold Position - Auto Calculated. If, with automatic selection of threshold, the threshold line locates too high (at the level where fluorescence curves reach plateau), select Threshold Position - User Defined regimen and set the threshold line as $1 / 3$ of distance between base line and level where fluorescence curves reach plateau (see figure 13).
5. In the table of results click on the title once to select the Treshold Cycle Ct column. Press Ctrl+C to copy the column.
15.Open the Microsoft ${ }^{\circledR}$ Excel AmpliSens FRT HR HPV Screen iQ Results Matrix.xls file. Agree to enable macros.
Note - If macros is disable when opening Excel worksheet (the Results button is not activated), then security level should be changed. Select

## Tools>Macro>Security>Medium.

6. Place cursor into the Ct cell under name of fluorescent dye FAM of Device data table, and select Insert from the context menu.
7. Then similarly click on Identifier title and press $\boldsymbol{C t r l}+\boldsymbol{C}$ (in iQ iCycler program), Place cursor into the Identifier cell of Sample labeling column of Device data table, and select Insert from the context menu.
8. Select the Hex-530/Joe-530 channel in the Select Reporter module.
9. An automatic selection of the base line is usually correct, therefore, curves are not "thrown over". Otherwise, set the Baseline cycle parameter as User defined in the Treshold Cycle Calculations module, Baseline cycles "2" through "10".
10.Set an automatic selection of threshold: Threshold Position - Auto Calculated.
11.Similarly, select from the table of results and copy the Treshold Cycle Ct column. Insert cursor in the Excel table into the Ct column, named by the HEX dye.
12.In the Order of insertion of tubes into the device dropdown menu select your variant of tube insertion (see item Insertion of tubes into the device).
10. Insert data of thresholds for weak samples according to the Important Product Information Bulletin enclosed to the given lot of the PCR kit.
14.Save Microsoft ${ }^{\circledR}$ Excel files under a different name.

## Data analysis

Data are analyzed automatically. When data are inserted into the Excel matrix, click the Results button. In the Results column detected phylogenetic groups of HPV will appear, and the result: Positive (pos), negative (neg), weak positive (weak) and non-valid (N/V).

To process data correctly, set the following in the Identifier column:

- Mark tubes with different mixtures, but of one sample, with the same name, or mark only one tube and leave the second tube without mark.
- Mark positive controls as " + " or $\mathbf{K}+$, and negative controls as "-" or K-.


## Possible problems and errors

It is recommended to read this chapter before PCR kit using.

| Possible problems | Reason | How to identify? | Suggested solutions |
| :---: | :---: | :---: | :---: |
| Processed fluorescence curves (PCR Base Line Subtracted Curve Fit mode) are "thrown over" (figure 15) | Incorrect mathematical processing of experiment data by the iCycler iQ program | Initial and final parts are intensity descent, and not horizontal (figure 15) | Set the Baseline cycle parameter as User defined in the module Threshold Cycle Calculations, and set Baseline cycles " 2 " through " 10 " for the calculation |
| Sensitivity decrease due to the destruction of probes | Incorrect storage or use of the reagents (high temperature, repeated opening of the tubes with the mixes, work in "dirty" conditions) may lead to the destruction of oligonucleotides | Destruction of the probes may be identified only by comparing the experimental data at the beginning and after a certain time of reagents using or by comparing with the same lot of reagents stored adequately. It can be identified by increase of background fluorescence values (the fluorescence at the initial of the experiment is evaluated in the Background subtracted mode) in different experiments by more than 3 times (using the same instrument and similarly prepared solutions for wells factors calculation) WARNING! Effect of increasing the fluorescence can also be observed after cleaning the instrument optical part | Use mixes stored in adequate conditions and with unexpired date (see the chapter "Stability and storage" in Instruction Manual) |
| Sensitivity decrease due to the decrease of polymerase (TaqF) activity | Incorrect storage of polymerase or violation of sterility conditions-leads to the enzyme destruction | It can be identified by signal absence of positive control or if the Ct value for the positive control is greater than the threshold of the weak samples | Use adequately stored (see the chapter "Stability and storage" in Instruction Manual) or a new enzyme |


| Possible error | Characters | Way to eliminate |
| :--- | :--- | :--- |
| Contamination of the specific <br> DNA | The signal is registered in any <br> channel in negative control | Repeat the PCR analysis. Take <br> measures to detect and eliminate <br> the source of contamination |
| Polymerase (TaqF) is not added <br> during the reaction mixture <br> preparation | Any positive signal including <br> the positive control is not <br> registered in any sample | Repeat the PCR analysis with <br> correctly prepared mixes |

## EXAMPLES OF OBTAINED DATA

## Raw data (Background subtracted mode)

Figure 11 - Initial curves (FAM)


Figure 12 - Initial curves (JOE/HEX)


## Processed data

a) normal processed curves (typical S-shape, threshod line crosses the curves only in the area of fluorescence accomulation)

Figure 13 - Processed curves (FAM) - the parameter of user's calculation of base line is set (User Defined)


Figure 14 - Processed curves (JOE/HEX)

b) incorrect curves processing

Figure 15 - Incorrectly processed curves (FAM) - curves are "thrown over" with automatic calculation of the base line (Auto Calculated)


REF R-V31-T-2x(RG,iQ,SC)-CE, REF R-V31-T-4x(RG,iQ,Mx)-CE / VER: 05.12.19-25.03.21 / Page 18 of 49

## Results analysis

Figure 16 - Results grid

|  | Threshold <br> Cycle <br> Ct |  | Identifier |
| :---: | ---: | :--- | :--- |
| C3 | 31.1 |  |  |
| C4 | 26.2 |  |  |
| C5 | 31.4 |  |  |
| C6 | 26.9 |  |  |
| C8 | 31.4 |  |  |
| C9 | 33.2 |  |  |
| C10 | 34.0 |  |  |
| D3 | 30.0 |  |  |
| D4 | 25.2 |  |  |
| D5 | 33.6 |  |  |
| D6 | 32.0 |  |  |
| D7 | 27.9 |  |  |
| D10 | 26.8 |  |  |
| E3 | 33.3 |  |  |
| E4 | 28.7 |  |  |
| E5 | 30.5 |  |  |
| E6 | 26.5 |  |  |

Figure 17 - AmpliSens FRT HR HPV Screen iQ Results Matrix.xls software AmpliSens ${ }^{\circledR}$ FRT HPV HCR Screen $i Q$
Date: Description:


## AMPLIFICATION AND DATA ANALYSIS USING Smart Cycler (Cepheid, USA) INSTRUMENT

## Programming the thermocycler

1. Switch the device on and start the SmartCycler program.
2. Before placing the tubes into the instrument it is necessary to centrifuge the reaction tubes for 3 s on the supplied SmartCycler centrifuge.
3. Insert the tubes into the instrument.

## Variants of tubes insertion

For further automatic results processing select one of the variants of tubes placement into the device:

- Variant 1: Insert sequentially into 2 adjacent (by number) modules a pair of tubes corresponding to one clinical sample: first with HPV FRT A9 mixture, then with HPV FRT A7+ mixture. Then, insert the pair corresponding to the next sample, etc.
- Variant 2 (reversal): Insert sequentially into 2 adjacent (by number) modules pair of tubes, corresponding to one clinical sample: first with HPV FRT A9 mixture, then with HPV FRT A9 mixture. Then, insert the pair corresponding to the next sample, etc.
NOTE: Pairs of tubes are inserted horizontally from left to right.

4. Select Define Protocols in the main menu of the program. In the opened window, select the New Protocol button in the left lower corner. Name the protocol and set the following parameters of the experiment (see table below):

Amplification program for HCR HPV 16, 18, 31, 33, 35; 39, 45, 51, 52, 56, 58, 59 types DNA

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Stage 1. Hold | 95 | 900 s | - | 1 |
| Stage 2. Hold | 65 | 120 s | - | 1 |
| Stage 3. | 95 | 20 s | - |  |
| 3-Temperature <br> Cycle | 63 | 30 s | - |  |
| Stage 4. <br> 3-Temperature <br> Cycle | 65 | 60 s | - |  |
|  | 95 | 25 s | - | 42 |
|  | 60 | 30 s | - |  |

5. Select the Save Protocol button in the lower segment of the window.
6. Click the Create Run button in the main menu.
7. Click the Dye set button in the left central segment of the window and select the combination FTTC25.
8. Click the Add/Remove Sites button in the center of the screen and in the window opened select needed protocol (program) and sites where analysis will be performed. Press the button $\mathbf{O K}$.
9. Start the program of the experiment by pressing the Start Run button in the lower segment of the screen. In the dialog window opened set the file to save all data of the experiment.
10.In the next opened window the main parameters of the experiment will be displayed.
11.To name samples, press the Results Table button. In the table opened in the Sample ID column name the samples. Only one of the pair of samples can be named. According to the manual for the device, Control samples C1, C2, C3 must be named as Standard, and values of calibrators must be taken from the Important Product Information Bulletin, and the negative control must be named as "-".
12.During the experiment intensity of fluorescence can be observed on TET/JOE channels for HPV DNA, and on FAM channel for internal control.

## Data processing and analysis

1. After amplification, HPV DNA concentrations are calculated for two tubes.
2. Select the Analysis settings item in menu.
3. In the opened window, set the threshold line level as 10 for FAM and TET/JOE channels, and click the Update Analysis button in the lower segment of the window. In the results table (window Results Table), values of the threshold cycles (Ct) and concentration for each sample will appear.
4. Click the Export button in the lower left segment of the program window. In the opened dialog window, mark only the Results table and Analysis Settings item. Click the Export button. Name the file.
5. The final result of HPV DNA concentration for two tubes normalized on number of human cells is calculated according to the formula:
a. The number of HPV DNA copies for the first tube is divided on number of human DNA copies for the first tube, and the result is multiplied by 200,000;
b. The number of HPV DNA copies for the second tube is divided by the number of human DNA copies for the second tube, and the result is multiplied by 200,000;
c. The result of calculation for the first tube is summarized with the result in the second tube;
d. The common logarithm of the resulting value is calculated;
e. the result is the concentration of HPV DNA in the log of HPV DNA copies per $10^{5}$ cells:
$\log$ HPV_on_100,000_cells $=\log \left(\frac{\text { HPV_DNA_amount_1 }}{\text { human_DNA_amount_1 }} * 200,000+\frac{\text { HPV_DNA_amount_2 }}{\text { human_DNA_amount_2 }} * 200,000\right)$
6. Save the Microsoft ${ }^{\circledR}$ Excel files under a different name.

REF R-V31-T-2x(RG,iQ,SC)-CE, REF R-V31-T-4x(RG,iQ,Mx)-CE / VER: 05.12.19-25.03.21 / Page 21 of 49

## Data analysis

The run is valid if

- Negative controls have no signal in all the channels (FAM/Green, JOE/Yellow/HEX/TET);
- All calibrators have signals in all the channels (FAM/Green, JOE/Yellow/HEX/TET);
- The correlation coefficient for calibration curves for all the channels is no less than 0.98.
NOTE: If the run is invalid all obtained results are considered to be unreliable. The PCR run should be repeated.
The result of HPV DNA detection of a given sample is considered to be
Negative, if the signal of the Internal Control (IC; FAM/Green channel) is detected in both tubes for the sample and the quantity of human DNA cells per reaction exceeds 500.
Positive, if a signal in the channel for the JOE fluorophore is detected at least in one of the two tubes. Result:
- One or several types belonging to the phylogenetic group A9 (if the signal is detected in the tube with the HPV FRT A9 mixture);
- One or several types belonging to the phylogenetic group A7 or types 51/56 (if the signal is detected in the tube with the HPV FRT A7+ mixture).

The result is invalid in the following cases:

- If no positive signal in the JOE/Yellow/HEX/TET channel (A9, A7, A5/A6) is detected in any of the two tubes and the signal of the Internal Control (IC; the FAM/Green channel) is not detected or number of human DNA cells per reaction does not exceed 500 .
- Weak positive signal(s) is/are detected in the JOE/Yellow/HEX/TET channel but the signal of the Internal Control (IC) in the FAM/Green channel is not detected or the number of human DNA cells does not exceed 500 .

NOTE: In case of invalid result, the analysis for this sample should be repeated from the DNA extraction stage or from the material sampling.

| Possible error | Characters | Way to eliminate |
| :--- | :--- | :--- |
| Contamination of the specific <br> DNA | The signal is registered in any <br> channel in negative control | Repeat the PCR analysis. Take <br> measures to detect and eliminate <br> the source of contamination |
| Polymerase (TaqF) is not <br> added during the reaction <br> mixture preparation | Any positive signal including the <br> positive control is not registered <br> in any sample | Repeat the PCR analysis with <br> correctly prepared mixes |

## AMPLIFICATION AND DATA ANALYSIS USING FOUR-CHANNEL Rotor-Gene 3000 and Rotor-Gene 6000 (Corbett Research, Australia) INSTRUMENTS

Hereinafter, all the terms corresponding to different instruments and software are indicated in the following order: for Rotor-Gene 3000 / for Rotor-Gene 6000.

## Programming the thermocycler

1. Turn on the instrument, run the Rotor-Gene software.
2. Insert tubes into the device. Ensure that the $1^{\text {st }}$ tube is placed in the $1^{\text {st }}$ well. Insert the rotor into the instrument, close the lid.

NOTE: If the carousel is not filled completely, balance it. To do this, fill the free wells with empty tubes (don't use tubes from previous experiments). Place any study tube (not an empty tube) to the well 1.
3. Start amplification program. Use one of variants:

## Using the ready template for the run

NOTE: Usage of the template file AmpliSens FRT HR HPV Screen RG4x.ret during amplification is highly recommended.

For usage of the template file for the PCR kit, copy previously AmpliSens FRT HR HPV Screen RG4x.ret file, enclosed to the kit, to the Templates folder of the RotorGene program. The default location of this folder for the RotorGene is the following: C:|Program Files|RotorGene 6|Templates - for Rotor-Gene 3000, and C:IProgram Files|RotorGene 6000 SoftwarelTemplates - for Rotor-Gene 6000. After that, in the New Run window (called by the New button on the toolbar), the AmpliSens FRT HR HPV Screen RG4x item will appear. Select it to start new experiment.
Note - Template file can be opened from another folder as well. Therefore, in the New Run window select tab Advanced, and there select the item Open A Template In Another Folder..., then switch to folder with the file AmpliSens FRT HR HPV Screen RG4x.ret.

The template file contains all the needed parameters of amplification; therefore, only the type data on the experiment and the designations of samples should be entered.

## Individual programming

1. Run the new run wizard in the Advanced tab.
2. Select the reaction volume $\mathbf{- 2 5} \boldsymbol{\mu l}$ and tick the $\mathbf{1 5} \boldsymbol{\mu}$ l oil layer volume option in the window opened after the window of rotor selecting.
3. Set the amplification program:

Amplification program for HCR HPV 16, 18, 31, 33, 35; 39, 45, 51, 52, 56, 58, 59 types DNA

| Step | Temperature, ${ }^{\circ} \mathrm{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Hold | 95 | 15 min | - | 1 |
| Hold2 | 65 | 2 min | - | 1 |
| Cycling | 95 | 20 s | - | 5 |
|  | 64 <br> Touchdown: <br> 1 deg. per cycle / <br> Lower temperature of each step on $1^{\circ} \mathrm{C}$ | 25 s | - |  |
|  | 65 | 55 s | - |  |
| Cycling2 | 95 | 15 s | - | 40 |
|  | 60 | 25 s | - |  |
|  | 65 | 25 s | FAM/Green, JOE/Yellow, ROX/Orange, Cy5/Red |  |

Note - AmpliSens FRT HR HPV Screen RG4x Program.pro file in the RotorGene software format can be used for setting the amplification program.

The "AmpliSens-1 RG" universal program for DNA amplification and detection
NOTE: can also be used (see below). Any combination of the tests can be performed in one instrument simultaneously with the use of the unified amplification program (for example, combined with tests for STI pathogen DNA detection).

The analytical performance characteristics of the reagent kit do not change when the universal amplification program is used.

Amplification program "AmpliSens-1 RG"

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Hold | 95 | 15 min | - | 1 |
| Cycling | 95 | 5 s | - | 5 |
|  | 60 | 20 s | - |  |
|  | 72 | 15 s | - | - |
|  | 95 | 5 s | 40 |  |
|  | 60 | 20 s |  |  |
|  | 72 | 15 s | - |  |

Note - The ROX/Orange and Cy5/Red channels are enabled when required if the "multiprime" format tests are performed.
4. Click the Calibrate/Gain Optimisation... button in the New Run Wizard window. In the opened window:
a) Perform the calibration in the FAM/Green, JOE/Yellow, ROX/Orange, Cy5/Red channels (click the Calibrate Acquiring/Optimise Acquiring button);
b) perform the calibration in the selected channels before the first detection (tick the Perform Calibration Before $1^{\text {st }}$ Acquisition/ Perform Optimisation Before $1^{\text {st }}$ Acquisition option);
c) for signal measurement optimization for the selected channels set calibration from

4FI to 8FI for all the channels (the Edit button, the Auto gain calibration channel settings window).
5. Select the Start run button for amplification run. Name the file.
6. Enter the data into the grid of the samples (it opens automatically after the amplification has been started). Enter the names/numbers of the test samples in the Name column. Analysis is performed with two tubes; therefore, for correct automatic analysis of results the both tubes of the sample must have the same name. Set the type Unknown opposite all the test samples including control samples. Set the type None for the cells matching with the corresponding empty tubes. Name calibrators as K1, K2, K3, Negative control of amplification as K-.
NOTE: Samples indicated as None won't be analysed.

## Data processing and analysis

Browse raw data of the device in four channels (FAM/Green, JOE/Yellow ROX/Orange, Cy5/Red)) selecting Cycling A... buttons on Channels panel. Take into account:

- Among all signals of samples on the channel, at least one must be positive (positive signal have specific S-shaped fluorescence accumulation curve, see figure 18). If experiment is organized and performed correctly, signals of DNA calibrator C1 HPV, DNA calibrator C2 HPV, DNA calibrator C3 HPV must be obtained.
NOTE: If positive signals on fluorescence channel are completely absent, analysis of data on this channel may provide incorrect result.
- Presence of samples with background signal that differs significantly from majority of signals means the mistake of insertion of reaction mixture or DNA sample into the tube (see figure 19b and the "Possible problems and errors" section).


## Data processing

1. Make sure that all the test samples are active in the legend at the right.
2. Activate the button Analysis in the menu, select the mode of the analysis Quantitation, activate the Cycling A. FAM/Cycling A. Green, Show buttons.
3. After opening the Quantitation analysis window set the threshold manually: Threshold $=0,03$.
4. Select the Linear scale. Select the Dynamic tube and Slope Correct buttons.
5. Choose the parameter More settings/Outlier Removal and set $20 \%$ for the value of negative samples threshold (NTC/Threshold).

In some rare cases due to the descend-type curves at the beginning of the
NOTE: experiment the threshold line can cross the fluorescence curves at the first cycles, and RotorGene program can record the crossing data as positive signal (see figure 24). To block this effect, use the Eliminate cycles before... option by

REF R-V31-T-2x(RG,iQ,SC)-CE, REF R-V31-T-4x(RG, iQ,Mx)-CE / VER: 05.12.19-25.03.21 / Page 25 of 49
setting 5 (crossing the threshold and the fluorescence curve at the first 5 cycles is ignored).
6. In the results grid (Quant. Results window); select the Name column by single click on the title. Copy the column selecting the Copy button from the right-click menu (figure 26).
7. Open file Microsoft ${ }^{\circledR}$ Excel AmpliSens FRT HR HPV SCREEN Quant Results Matrix.xIs, enclosed to the reagent kit. Agree to enable macros.

Note - If macros is disable when opening Excel worksheet (the Results button is not activated), then security level should be changed. Select Tools>Macro>Security>Medium.
8. Set cursor on Name cell of Samples labeling column of Device data table and select Insert command from the context menu.
9. Similarly, select and copy column Ct column from the results grid (Quant.Results). Set cursor in Excel table into $\mathbf{C t}$ cell under the name of fluorescent dye FAM/Green
10.Repeat the procedure for fluorescent dye JOE/Yellow ,ROX/Orange, Cy5/Red
11.Set Quantitative analysis regimen with internal calibration.
12. Insert data on concentration of calibrators into the table Calibrator value according to Important Product Information Bulletin enclosed to the given lot of the PCR kit.
13. Check in the Samples labelling column, that DNA calibrator C1 HPV is named as K1, DNA calibrator C2 HPV is named as K2, DNA calibrator C3 HPV is named as K3 (without blank between letter K and number), and negative control is named as K or "-".
14.Save Microsoft ${ }^{\circledR}$ Excel file under different name.

## Data analysis

Data are analyzed automatically. When data are inserted into the Excel spreadsheet, press the Results button. In the Results column detected phylogenetic groups of HPV will appear, and the result: Positive (pos), negative (neg), weak positive (weak), non-valid (N/V). Then in the table number of human cells per reaction will be shown; that is used for evaluation of validity of the sample. Then HPV DNA is calculated as log for $10^{5}$ cells for each group, and total viral load. The last column contains probable explanation of the clinical value of the result according to the following:

| Result $\lg ($ HPV DNA copies per <br> 100000 cells $)$ | Value |
| :---: | :--- |
| $<3$ | Clinically insignificant value |
| $3-5$ | Clinically valuable. Dysplasia cannot be excluded; risk of <br> dysplasia. |
| $>5$ | Clinically valuable, of increased value. Dysplasia is highly <br> suggestive. |

To provide correct data processing, check that in the Name column:

- Tubes with different mixtures of the same sample have the same name;
- Positive controls are named as "+" or K+, and negative controls as "-" or K-.


## Possible problems and errors

It is recommended to read this chapter before PCR kit using.

| Possible problems | Reason | How to identify? | Suggested solutions |
| :---: | :---: | :---: | :---: |
| Negative samples are analyzed by Rotor-Gene software as positive | Incorrect mathematical processing of negative samples in the presence of the fluorescence decrease section at the initial cycles (see figures 19a, 25) | Typical positive sample has a characteristic S-shaped curve of fluorescence accumulation (see figures 18, 20-23). Incorrect processed negative samples are viewed as pretty straight lines going upward (Fig. 25) | One must use the Ignore First by selecting the value 5 cycles. If it does not lead to a proper result, try to increase this value to 1-5 |
|  | Crossing the threshold line with downstream fluorescence curves in the initial cycles (see figure 24) | In the graph of processed fluorescence curves red threshold line (Threshold) crosses or "touches" fluorescence curves in the left side of the graph (first cycles) (see figure 24) | Use the function Eliminate cycles before ... by setting 5 (crossing the threshold and the fluorescence curve at the first 5 cycles is ignored) |
| Sensitivity decrease due to impurity of the instrument lenses | Impurity of lenses leads to lower efficiency of the excitation and fluorescence detection, which primarily affects to samples with small quantity of specific DNA, giving a small fluorescence increase | Low values of the background signal in all 4 detection channels (<1) at the maximum value of the multiplier gain (10) | Clean the instrument lenses at least 1 time per month |
| Sensitivity decrease due to the destruction of probes | Incorrect storage or use of the reagents (high temperature, repeated opening of the tubes with the mixes, work in "dirty" conditions) may lead to the destruction of oligonucleotides | Destruction of the probes may be identified only by comparing the experimental data at the beginning and after a certain time of reagents using or by comparing with the same lot of reagents stored adequately. It can be identified by decrease of automatically chosen multiplier gain coefficient value more than 2 units in different | Use mixes stored in adequate conditions and with unexpired date (see the chapter "Stability and storage" in Instruction Manual) |


| Possible <br> problems | Reason | How to identify? | Suggested solutions |
| :--- | :--- | :--- | :--- |
|  |  | experiments (using the <br> same instrument) <br> WARNING! Effect of <br> increasing the multiplier <br> gain can also be observed <br> after cleaning the <br> instrument lenses from <br> heavy dirt |  |
| Sensitivity <br> decrease due to <br> the decrease of <br> polymerase <br> (TaqF) activity | Incorrect storage of <br> polymerase or violation of <br> sterility conditions leads to <br> the enzyme destruction | It can be identified by <br> signal absence of positive <br> control or if Ct value for <br> the positive control is <br> greater than the threshold <br> of the weak samples | Use adequately stored <br> (see the chapter "Stability <br> and storage" in Instruction <br> Manual) or a new enzyme |

Note - The information about all set parameters of the experiment and the autocalibration report can be found by browsing the experiment settings (the Settings button). Particularly, Autocalibration Log Messages point in the Messages tab is the autocalibration report.

| Possible error | Characters | Way to eliminate |
| :--- | :--- | :--- |
| Contamination of the specific DNA | The signal is registered in any <br> channel in negative control | Repeat the experiment. Take <br> measures to detect and <br> eliminate the source of <br> contamination |
| Less of DNA sample is added or <br> not added at all to the tube | Background signal greatly exceeds <br> other signals (seen on untreated <br> curves). The sample is negative <br> (See figure 19b) | Repeat the sample analysis |
| Less of reaction mixture is added <br> or not added at all or more of DNA <br> sample is added to the tube | Background signal is greatly less <br> than other signals (seen on <br> untreated curves). (figure 19b) | Repeat the analysis if the sample <br> is negative |
| Autocalibration parameter is not set <br> from 5FI to 10Fl or an error in first <br> tube in rotor is present (tube is <br> absent, DNA sample or reaction <br> mixture is added incorrectly) | Most of fluorescence background <br> signals is less than 1 or more <br> than 20 | Set the parameter at the next <br> running. Repeat the experiment if <br> there is "overshoot" or the signal <br> are too weak (there is no positive <br> signals at processing, background <br> is less than 0.5) |
| Polymerase (TaqF) is not added <br> during the reaction mixture <br> preparation | Any positive signal including the <br> positive control is not registered in <br> any sample. | Repeat the analysis with correctly <br> prepared mixes |

## EXAMPLES OF OBTAINED DATA

## Raw data

Figure 18 - Normal initial curves


Figure 19a - Initial curves with "bend" (fluorescence decrease at the initial cycles)


Figure 19b - One of possible errors is viewed by background signal level: DNA sample was not added to tube 1, double quantity of DNA sample was added to the tube 2.


## Processed data

c) normal processed curves (typical S-shape, threshod line crosses the curves only in the area of fluorescence accomulation)

Figure 20 - Data on FAM/Green channel - internal control ( $\beta$-globin gene)


Figure 21 - Data on Cy5/Red channel


Figure 22 - Data on JOE/Yellow channel


Figure 23 - Data on ROX/Orange channel

d) incorrect curves processing

Figure 24 - Threshold line crosses twice the fluorescence curves


Figure 25 - Incorrect processing the curves with "bend" (from figure 2)


## Results analysis

Figure 26 - Results grid Quant.Results

| (ii) Quant. Results - Cycling A.JOE... |  |  | JOE... $-\square$ | X |
| :---: | :---: | :---: | :---: | :---: |
| Name | Type | Ct | Given Conc (cop) | Cal |
| 842t | Unknown | 20.06 |  |  |
|  | Unknown |  |  |  |
|  | Unknown | 31,60 |  |  |
|  | Unknown |  |  |  |
| 690kt | Unknown |  |  |  |
|  | Unknown | 25,33 |  |  |
|  | Unknown |  |  |  |
|  | Unknown | 28,82 |  |  |
| $+$ | Positive Control | 28,66 |  |  |
| + | Positive Control | 31.89 |  |  |
| + | Positive Control | 31,86 |  |  |
| + | Positive Control | 28,19 |  |  |
| - | Negative Control |  |  |  |
| - | Negative Control |  |  |  |
| - | Negative Control |  |  |  |
| $\cdot$ | Negative Control |  |  |  |

Figure 27 - AmpliSens FRT HR HPV Screen Quant Results Matrix.xls software for data analysis in Microsoft ${ }^{\circledR}$ Excel format AmpliSens® HPV HCR screen-titre-FRT

| Date: Device: Description: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc$ Qualitative analysis |  | $\left[\begin{array}{l}\text { Quantitative analysis }- \text { Internal calibration (calibrators in current setting) } \\ \subset \text { External calibration (set parameters } \mathrm{K} \text { and } \mathrm{B} \text { ) }\end{array}\right.$ |  |  |  |  | $\left\lvert\, \begin{gathered} \text { Calitrator } \\ \text { value } \end{gathered}\right.$ | $\begin{gathered} \text { GLOB } \\ \text { Fam/Green } \end{gathered}$ | HPV16 Joe/Yellow | HPV18 Rox/Orange | HPV51 Cy5/Red |  |  |
|  |  |  |  |  |  |  |  |  |
| Clear table |  |  |  |  |  |  |  |  |  |  | Mark urnamed | K1 |  |  |  |  |  |  |
|  |  |  |  |  |  | K2 |  |  |  |  |  |  |  |
|  |  |  |  |  |  | K3 |  |  |  |  |  |  |  |
| №№ | Samples labelling | Fam Green (IC) |  | Rox Orange (A7) |  | Resuls |  |  |  |  |  |  |  |
|  | Name | Ct | Ct | Ct | Ct | phylogenetic group | Qual. | quantity of cells | $\begin{array}{\|c} \hline \operatorname{lg~HPV~A9/~} \\ 10^{n} 5 \text { cells } \\ \hline \end{array}$ | $\begin{aligned} & \hline \operatorname{lg~HPV~A7/~} \\ & 10^{\wedge} 5 \text { cells } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \lg \mathrm{HPV} \text { A5A6 } \\ 10^{\wedge} 5 \text { cells } \\ \hline \end{gathered}$ | $\begin{array}{\|c} \hline \text { Total lg HPV } / \\ 10^{\wedge} 5 \text { cells } \\ \hline \end{array}$ | Clinical significance |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1213 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |

## AMPLIFICATION AND DATA ANALYSIS USING iCycler iQ5 (Bio-Rad, USA) INSTRUMENT

## Programming the thermocycler

1. Turn on the instrument, start iQ5 iCycler program.

NOTE: The lamp is to be warmed up during 15 min before starting the experiment.
2. Set and save the amplification program in the Workshop module:

DNA amplification program for HCR HPV types 16, 18, 31, 33, 35; 39, 45, 51, 52, 56, 58 , and 59

| Step | Temperature, ${ }^{\circ} \mathrm{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 95 | 15 min | - | 1 |
| 2 | 95 | 15 s | - | 6 |
|  | $\begin{gathered} 65 \\ \text { Temp -: } \\ \text { 1.0 for a cycle } \\ \hline \end{gathered}$ | 55 s | - |  |
|  | 65 | 25 s | - |  |
| 3 | 95 | 15 s | - | 41 |
|  | 60 | 55 s | Real-time |  |
|  | 65 | 25 s | - |  |

For installation of amplification program the included file AmpliSens FRT HR HPV Screen iQ5.tmo can be used.

The "AmpliSens-1 iQ" universal program for DNA amplification and detection

## NOTE:

 can also be used (see below). Any combination of the tests can be performed in one instrument simultaneously with the use of the unified amplification program (for example, combined with tests for STI pathogen DNA detection).The analytical performance characteristics of the reagent kit do not change when the universal amplification program is used.
"AmpliSens-1 iQ" amplification program

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 95 | 15 min | - | 1 |
| 2 | 95 | 5 s | - | 5 |
|  | 60 | 20 s | - |  |
|  | 72 | 15 s | - |  |
| 3 | 95 | 5 s | 40 |  |
|  | 60 | 30 s | FAM, HEX, ROX, Cy5 |  |
|  | 72 | 15 s | - |  |

Note - The ROX and Cy5 channels are enabled when required if the "multiprime" format tests are performed.
3. Select Plate Setup to mark the new samples. Set the fluorescent measurement on four channel: FAM, HEX, ROX, Cy5
4. Click Run. Select the mode of wells factor measurement (Well factor). Both the mode with measurement of well factors by experimental tubes and the mode with fixed well factors (recommended) can be used. Start the experiment.

## Data processing and analysis

## Data Processing

1. Proceed to the Data Analysis mode.
2. Browse the data separately in each of four channels.
3. Ensure that automatic selection of threshold level is correct for each channel. Normally, the threshold line should cross only the sigmoid curves of signal accumulation of positive samples and controls and should not cross the base line. Otherwise, the threshold level should be raised.
4. Click the Results button (situated under the buttons with the fluorophores' names).
5. Right-click in the displayed results grid. Select Export to Excel from the drop-down menu. Agree to save the file. If the Microsoft Excel program is installed on the computer then this file will open automatically (if the program is not installed, then use the computer with installed Microsoft Excel). The structure of this file is that the results are displayed sequentially for the FAM, HEX, ROX and Cy5 channels.
6. Open the Microsoft ${ }^{\circledR}$ Excel AmpliSens FRT HR HPV Screen iQ Results Matrix.xls file and agree to enable macros.
Note - If macros is disable when opening Excel worksheet (the Results button is not activated), then security level should be changed. Select

## Tools>Macro>Security>Medium.

7. In the file with results select and copy the cells of Threshold Cycle (Ct) column corresponding to the FAM channel. Proceed to the results calculation file and paste the copied cells into the FAM column beginning from the first cell.
8. Similarly, copy the cells of Threshold Cycle (Ct) column corresponding to the HEX, ROX and Cy5 channels channel into the HEX, ROX and Cy5 columns of the results calculation program.
9. Copy the samples names from the Identifier column into the Name column of the results calculation program.
10.Mark in the Name column, the DNA calibrators as K1, K2, K3, and the negative controls as K- or "-". Mark the wells which are not corresponding to the test tubes by the \# symbol.
11.Save Microsoft ${ }^{\circledR}$ Excel files under a different name.
10. Click the Results button.

## Data analysis

Data are analyzed automatically. When data are inserted into the Excel spreadsheet, click the Results button. In the Results column the detected phylogenetic groups of HPV, and the result (positive (pos), negative (neg), weak positive (weak), non-valid (N/V)) will appear. Then in the table number of human cells per reaction will appear; that is used for evaluation of validity of the sample. Then HPV DNA is calculated as $\log$ for $10^{5}$ cells for each group, and total viral load. The last column contains probable explanation of the clinical value of the result according to the following:

| Result $\lg (H P V$ DNA copies per <br> $100,000$ cells $)$ | Value |
| :---: | :--- |
| $<3$ | Clinically insignificant value |
| $3-5$ | Clinically valuable. Dysplasia cannot be excluded; risk of <br> dysplasia. |
| $>5$ | Clinically valuable, of increased value. Dysplasia is highly <br> suggestive. |

## Possible problems and errors

It is recommended to read this chapter before PCR kit using.

| Possible problems | Reason | How to identify? | Suggested solutions |
| :---: | :---: | :---: | :---: |
| Sensitivity decrease due to the destruction of probes | Incorrect storage or use of the reagents (high temperature, repeated opening of the tubes with the mixes, work in "dirty" conditions) may lead to the destruction of oligonucleotides | Destruction of the probes may be identified only by comparing the experimental data at the beginning and after a certain time of reagents using or by comparing with the same lot of reagents stored adequately. It can be identified by increase of background fluorescence values (the fluorescence at the initial of the experiment is evaluated in the Background subtracted mode) in different experiments by more than 2 times (using the same instrument and similarly prepared solutions for wells factors calculation) WARNING! Effect of increasing the fluorescence can also be observed after cleaning the instrument optical part | Use mixes stored in adequate conditions and with unexpired date (see the chapter "Stability and storage" in Instruction Manual) |
| Sensitivity decrease due to the decrease of polymerase (TaqF) activity | Incorrect storage of polymerase or violation of sterility conditions leads to the enzyme destruction | It can be identified by signal absence of positive control or if the $C t$ value for the positive control is greater than the threshold of the weak samples | Use adequately stored (see the chapter "Stability and storage" in Instruction Manual) or a new enzyme |


| Possible error | Characters | Way to eliminate |
| :--- | :--- | :--- |
| Contamination of the specific <br> DNA | The signal is registered in any <br> channel in negative control | Repeat the PCR analysis. Take <br> measures to detect and eliminate <br> the source of contamination |
| Less of DNA sample is added or <br> not added at all to the tube | Background signal greatly <br> exceeds other signals sseen on <br> untreated curves - Background <br> subtracted mode). The sample is <br> negative | Repeat the sample analysis |
| Less of reaction mixture is <br> added or not added at all or <br> more of DNA sample is added <br> to the tube | Background signal is greatly less <br> than other signals (seen on <br> untreated curves - Background <br> subtracted mode) | Repeat the analysis if the sample <br> is negative |
| The threshold level is set <br> incorrectly | The threshold line is drawn with <br> the negative samples or is higher <br> than some or all positive curves <br> (S-shaped) | Set the threshold line so that it <br> crosses only the sigmoid curves of <br> fluorescence accumulation or at <br> the level of $1 / 4$ of height between <br> the final fluorescence value of <br> negative and positive samples |
| The drops are not sedimented <br> from the walls of the tubes <br> before the run | The appearance of negative or <br> positive "steps" in the curves of the <br> fluorescence accumulation | Open the BaseLine Threshold <br> window by clicking the right mouse <br> button on the fluorescence curve. <br> Set the range for calculation of the <br> base line beginning from the first <br> cycle after the step. |
| Polymerase (TagF) is not added <br> during the reaction mixture <br> preparation | Any positive signal including the <br> positive control is not registered in <br> any sample | Repeat the PCR analysis with <br> correctly prepared mixes |

## EXAMPLES OF OBTAINED DATA

## Raw data (Background subtracted mode)

Figure 28 - Normal initial curves (FAM)


Figure 29 - One of possible errors - "step" of base line: In the Err samples the drops are not sedimented from the walls of the tubes before the run, the mixes "fell in" during the amplification


## Processed data

c) normal processed curves, typical S-shape, correct placement of thresholds (PCR Base Line Subtracted Curve Fit mode)

Figure 30 - FAM channel - internal control ( $\beta$-globin gene)


Figure 31 - Cy5 channel


Figure 32 - JOE channel


Figure 33 - ROX channel


## AMPLIFICATION AND DATA ANALYSIS USING Mx3000P (Stratagene, USA) INSTRUMENT

## Programming the thermocycler

1. Switch the instrument on, start the program Stratagene Mx3000P.
2. Select Quantitative PCR (Multiple Standards) in the New Experiment Options window and check the Turn lamp on for warm-up box.

NOTE: The lamp is to be warmed up during 15 min before starting the experiment.
3. Insert the tubes into the instrument and close the lid.
4. Select Optics Configuration in the Options menu. In the Dye Assignment window set FAM next to the FAM filter set, set JOE next to the HEX/JOE filter set.
5. In instrument menu, select Filter Set Gain Settings... In the opened window, place the following parameters of the multiplication factor:

| Cy5 | x4 |
| :---: | :---: |
| ROX | x1 |
| HEX/JOE | x4 |
| FAM | x4 |

6. Set fluorescence detection parameters in the Plate Setup menu. For this:

- Select all cells with the test tubes (holding Ctrl and selecting the needed range)

REF R-V31-T-2x(RG,iQ,SC)-CE, REF R-V31-T-4x(RG,iQ,Mx)-CE / VER: 05.12.19-25.03.21 / Page 37 of 49

- Mark all selected cells as Unknown in Well type window. Set FAM, HEX, ROX and Cy5 in the Collect fluorescence data option.
- Name each sample by double clicking on each cell (Well Information window). Mark positive control as "+", negative control as "-" (samples names can also be entered during the amplification or after it returning to this tab).

7. In Thermal Profile Setup tab, set the amplification program. This may be performed by one of two methods:

Using of the template file for setting the amplification program (is recommended).
Click the Import... button which is to the right of the depicted thermocycling profile.
Select the fold containing AmpliSens FRT HR HPV Screen Mx.mxp file enclosed to the PCR kit and open it. The needed thermocycling profile will appear in the Thermal

Profile window.

## Individual programming

DNA amplification program for HCR HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 , and 59

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Segment 1 | 95 | 15 min | - | 1 |
| Segment 2 | 65 | 2 min | - | 1 |
| Segment 3 <br> (Cycling) | 95 | 20 s | - |  |
|  | 64 | Touchdown: <br> 1 deg. per cycle | 25 s | - |
|  | 65 | 55 s | - |  |
|  | 95 | 20 s | - | 40 |
|  | 60 | 25 s | - |  |

The "AmpliSens-1 Mx" universal program for DNA amplification and detection

## NOTE:

 can also be used (see below). Any combination of the tests can be performed in one instrument simultaneously with the use of the unified amplification program (for example, combined with tests for STI pathogen DNA detection).The analytical performance characteristics of the reagent kit do not change when the universal amplification program is used.

Amplification program "AmpliSens-1 Mx"

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Segment 1. | 95 | 15 min | - | 1 |
| Segment 2. <br> (Cycling) | 95 | 5 s | - |  |
|  | 60 | 20 s | - | 5 |
|  | 72 | 15 s | - |  |
|  | 95 | 5 s | - | 40 |
|  | 60 | 30 s | FAM, JOE, ROX, Cy5 |  |

Note - The ROX and Cy5 channels are enabled when required if the "multiprime" format tests are performed.
8. Start the amplification selecting the Run button, then Start. Name the experiment.

## Data processing and analysis

## Data Processing

1. In Mx3000P software, select Analysis by clicking the corresponding button of the tool bar.
2. The Analysis Selection/Setup tab will open. Make sure that all the test samples are active (the cells corresponding to the samples should be of a different colour). Otherwise select all the test samples by holding down the Ctrl button and selecting the needed range with the mouse.
3. Proceed to the Results tab.
4. Activate Cy5 channel and do not activate other channels in the Dyes Shown panel. Set in the Threshold fluorescence 150 for the Cy5 channel. Then, sequentially activate other channels and set the threshold values as follows:

| Cy5 | 150 |
| :---: | :---: |
| ROX | 150 |
| HEX/JOE | 150 |
| FAM | 150 |

5. Then activate all four channels (click Cy5, ROX, HEX and FAM buttons in the Dyes Shown field).
6. Make sure that all four fluorescence channels are ticked.
7. In the Area to analyze field, select the Text Report item. Ensure that all data are sorted by dye name (Dye column). For this click once on the Dye column name (figure 40).
8. Proceed to the File menu, then to Export Text Report and Export Text Report to Excel. Microsoft Excel window will be opened.
9. Open the AmpliSens FRT HR HPV Screen Quant 96 Results Matrix.xls Microsoft ${ }^{\circledR}$ Excel file. Agree to enable macros.

REF R-V31-T-2x(RG, iQ, SC)-CE, REF R-V31-T-4x(RG, iQ,Mx)-CE / VER: 05.12.19-25.03.21 / Page 39 of 49

Note - If macros is disable when opening Excel worksheet (the Results button is not activated), then security level should be changed. Select

## Tools>Macro>Security>Medium.

10.Copy the samples names from the Text Report window into the Samples labeling column of the automatic result analysis software.
11.Copy the Ct values for all four channels into the corresponding cells of automatic result analysis software.
12.Set the Quantitative analysis mode, Internal calibration.
13. Insert data on concentration of calibrators into the table Calibrator value according to Important Product Information Bulletin enclosed to the given lot of the PCR kit.
14.Check in the Samples labelling column, that DNA calibrator C1 HPV is named as K1, DNA calibrator C2 HPV is named as K2, DNA calibrator C3 HPV is named as K3 (without blank between letter K and number), and negative control is named as K - or "_".
15.Save Microsoft ${ }^{\circledR}$ Excel files under a different name.
16. Click the Results button.

## Data analysis

Data are analyzed automatically. When data are inserted into the Excel matrix, click Results button. In the Results column, the detected phylogenetic groups of HPV will appear, and the result: Positive (pos), negative (neg), weak positive (weak), non-valid (N/V). Then in the table number of human cells per reaction will appear; that is used for evaluation of validity of the sample. Then HPV DNA is calculated as log for $10^{5}$ cells for each group, and total viral load. The last column contains probable explanation of the clinical value of the result according to the following:

| Result lg (HPV DNA copies <br> per 100 000 cells) |  |
| :---: | :--- |
| $<3$ | Clinically insignificant value |
| $3-5$ | Clinically valuable. Dysplasia cannot be excluded; risk of dysplasia. |
| $>5$ | Clinically valuable, of increased value. Dysplasia is highly <br> suggestive. |

## Possible problems and errors

It is recommended to read this chapter before PCR kit using.

| $\begin{array}{c}\text { Possible } \\ \text { problems }\end{array}$ | Reason | How to identify? | Suggested solutions |
| :--- | :--- | :--- | :--- |
| $\begin{array}{l}\text { Sensitivity decrease } \\ \text { due to the } \\ \text { destruction of } \\ \text { probes }\end{array}$ | $\begin{array}{l}\text { Incorrect storage or use of } \\ \text { the reagents (high } \\ \text { temperature, repeated } \\ \text { opening of the tubes with } \\ \text { the mixes, work in "dirty" } \\ \text { conditions) may lead to the } \\ \text { destruction of } \\ \text { oligonucleotides }\end{array}$ | $\begin{array}{l}\text { Destruction of the probes } \\ \text { may be identified only by } \\ \text { comparing the experimental } \\ \text { data at the beginning and } \\ \text { after a certain time of } \\ \text { reagents using or by } \\ \text { comparing with the same lot } \\ \text { of reagents stored } \\ \text { adequately. } \\ \text { It can be identified by } \\ \text { increase of background } \\ \text { fluorescence values (the } \\ \text { fluorescence at the initial of } \\ \text { the experiment is evaluated } \\ \text { in the Background } \\ \text { subtracted mode) in } \\ \text { different experiments by } \\ \text { more than 2 times (using } \\ \text { the same instrument and } \\ \text { adequate conditions } \\ \text { and with unexpired } \\ \text { date (see the chapter } \\ \text { "Stability and storage" } \\ \text { in Instruction Manual) }\end{array}$ |  |
|  |  | $\begin{array}{l}\text { similarly prepared solutions } \\ \text { for wells factors calculation) } \\ \text { WARNING! Effect of }\end{array}$ |  |
| increasing the fluorescence |  |  |  |$\}$


| Possible error | Characters | Way to eliminate |
| :--- | :--- | :--- |
| Contamination of the specific DNA | The signal is registered in any <br> channel in negative control | Repeat the PCR analysis. Take <br> measures to detect and eliminate <br> the source of contamination |
| Less of DNA sample is added or <br> not added at all to the tube | Background signal greatly <br> exceeds other signals (seen on <br> untreated curves $-\boldsymbol{R}-$ <br> multicomponent view mode). <br> The sample is negative | Repeat the sample analysis |
| Less of reaction mixture is added <br> or not added at all or more of DNA <br> sample is added to the tube | Background signal is greatly less <br> than other signals (seen on <br> untreated curves - $\boldsymbol{R}-$ <br> multicomponent view mode) | Repeat the analysis if the sample <br> is negative |


| Possible error | Characters | Way to eliminate |
| :--- | :--- | :--- |
| The threshold level is set <br> incorrectly | The threshold line is drawn with <br> the negative samples or is <br> higher than some or all positive <br> curves (S-shaped) | Set the threshold line so that it <br> crosses only the sigmoid curves of <br> fluorescence accumulation or at <br> the level of $1 / 4$ of height between <br> the final fluorescence value of <br> negative and positive samples |
| Polymerase (TaqF) is not added <br> during the reaction mixture <br> preparation | Any positive signal including the <br> positive control is not registered <br> in any sample | Repeat the PCR analysis with <br> correctly prepared mixes |

## EXAMPLES OF OBTAINED DATA

## Raw data ( $\boldsymbol{R}$ mode)

Figure 34 - Normal initial curves


Figure 35 - One of possible errors is seen by the level of background signal: In the DNA sample was not added into the Err tube


## Processed data

d) normal processed curves, $\boldsymbol{d} \boldsymbol{R}$ mode (typical S-shape)

Figure 36 - FAM channel - internal control ( $\beta$-globin gene)


Figure 37 - Cy5 channel


Figure 38 - JOE channel


Figure 39 - ROX channel


## Results analysis

Figure 40 - Text Report window. All data are sorted by the well name (Well) in ascending order

| Well | Dye | Well Type | Threshold (dR) | $\mathrm{Ct}(\mathrm{dR})$ |
| :---: | :---: | :---: | :---: | :---: |
| C3 | CY5 | Unknown | 150.000 | No Ct |
| C3 | ROX | Unknown | 150.000 | NoCt |
| C3 | JOE | Unknown | 150.000 | 31.99 |
| C3 | FAM | Unknown | 150.000 | 17.08 |
| C4 | CY5 | Unknown | 150.000 | No Ct |
| C4 | ROX | Unknown | 150.000 | NoCt |
| C4 | JOE | Unknown | 150.000 | 27.46 |
| C4 | FAM | Unknown | 150.000 | 17.90 |
| C5 | CY5 | Unknown | 150.000 | NoCt |
| C5 | ROX | Unknown | 150.000 | NoCt |
| C5 | JOE | Unknown | 150.000 | 30.62 |
| C5 | FAM | Unknown | 150.000 | 21.76 |
| C6 | CY5 | Unknown | 150.000 | NoCt |
| C6 | ROX | Unknown | 150.000 | No Ct |
| C6 | JOE | Unknown | 150.000 | 27.51 |
| C6 | FAM | Unknown | 150.000 | 21.74 |
| C7 | CY5 | Unknown | 150.000 | NoCt |
| C7 | ROX | Unknown | 150.000 | No Ct |
| C7 | JOE | Unknown | 150.000 | 33.71 |
| C7 | FAM | Unknown | 150.000 | 24.81 |
| C8 | CY5 | Unknown | 150.000 | No Ct |
| C8 | ROX | Unknown | 150.000 | 34.02 |
| C8 | JOE | Unknown | 150.000 | 31.48 |
| C8 | FAM | Unknown | 150.000 | 21.38 |
| C9 | CY5 | Unknown | 150.000 | No Ct |
| C9 | ROX | Unknown | 150.000 | No Ct |
| C9 | JOE | Unknown | 150.000 | 33.53 |
| C9 | FAM | Unknown | 150.000 | 21.08 |
| C10 | CY5 | Unknown | 150.000 | No Ct |
| C10 | ROX | Unknown | 150.000 | No Ct |
| C10 | JOE | Unknown | 150.000 | 32.54 |
| C10 | FAM | Unknown | 150.000 | 21.41 |
| D3 | CY5 | Unknown | 150.000 | No Ct |
| D3 | ROX | Unknown | 150.000 | No Ct |

Figure 41 - AmpliSens FRT HR HPV Screen Quant Results Matrix.xls software
AmpliSens $®^{8}$ HPV HCR screen-titre-FRT


## AMPLIFICATION AND DATA ANALYSIS USING CFX96 (BIO-RAD, USA)

Carry out the sample pretreatment and reaction mixture preparation stages according to the PCR kit Instruction Manual. When carrying out the amplification it is recommended to use thin-walled PCR tubes ( 0.2 ml ) with domed or flat optically transparent caps, or tubes ( 0.2 ml ) with transparent caps from the eight-pieces-strips (e.g. Axygen, USA) (detection through the cap of the tube).

## Programming the thermocycler

1. Turn on the instrument and start the Bio-Rad CFX Manager software.
2. Program the instrument according to the Instruction Manual provided by the manufacturer.

## Creating the template for the run

1. In the Startup Wizard window it is necessary to select the Create a new Run/Experiment (or select New in the File menu and then select Run.../Experiment...). Click OK
2. In the Run Setup window, select Protocol tab and click the Create new.... Set the amplification parameters (time, temperature, cycles, and fluorescence acquiring cycle) in the opened Protocol Editor - New window. Set Sample Volume - $\mathbf{2 5} \boldsymbol{\mu}$.

Amplification program for HCR HPV 16, 18, 31, 33, 35; 39, 45, 51, 52, 56, 58, 59 types DNA

| Step | Temperature, ${ }^{\circ} \mathrm{C}$ | Time | Fluorescence detection | Number of cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 95 | 15 min | - | 1 |
| 2 | 95 | 15 s | - | 6 |
|  | 65 |  | - |  |
|  | Touchdown: <br> 1 deg. per cycle | 55 s |  |  |
|  | 65 | 25 s | - | 41 |
|  | 95 | 15 s | - |  |
|  | 60 | 55 s | FAM, HEX, ROX, Cy5 |  |

## NOTE:

Set Ramp Rate $2,5^{\circ} \mathrm{C} / \mathrm{s}$ by clicking the Step Options button for each step of cycling (see the figure below). Click $O K$.

The "AmpliSens-1" universal program for DNA amplification and detection can
NOTE: also be used (see below). Any combination of the tests can be performed in one instrument simultaneously with the use of the unified amplification program (for example, combined with tests for STI pathogen DNA detection).

The analytical performance characteristics of the reagent kit do not change when the universal amplification program is used.

AmpliSens-1 amplification program for plate-type instruments

| Step | Temperature, ${ }^{\circ} \mathbf{C}$ | Time | Fluorescence detection | Number of cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 95 | 15 min | - | 1 |
| 2 | 95 | 5 s | - | 5 |
|  | 60 | 20 s | - |  |
|  | 72 | 15 s | - | 40 |
| 3 | 95 | 5 s | - |  |
|  | 60 | 30 s | FAM, HEX, ROX, Cy5 |  |
|  | 72 | 15 s | - |  |

3. Save the protocol: in the Protocol Editor New window select File, then Save As, name the file and click Save.
4. Set the plate setup: in the Plate tab click the Create new... button. Set the tube order in the opened Plate Editor - New window. Click the Select Fluorophores... to mark appropriate fluorophores for this run and click OK. Then in the Load column (in the right part of the window) tick the fluorescence signal acquiring for all the samples in the required channels. Define sample names in the Sample name window, moreover the Load function is to be ticked.
5. Save the plate setup: select File and then Save as in the Plate Editor New window. Enter the file name, click Save.
6. Select the Start Run tab. Open the lid of the instrument by the Open Lid button. Insert the reaction tubes in the wells of the instrument in accordance with the entered plate setup. Close the lid by the Close Lid button.

Monitor the tubes. There must not be drops left on the walls of the tubes as
NOTE: falling drops during the amplification process may lead to the signal failure and complicate the results analysis. Don't turn the tubes (strips) upside down while inserting them into the instrument.
7. Click the Start Run button and start the program with the selected plate setup. Select the directory for the file saving, name the file, click Save.

## Using the ready template for the run

The test parameters and the plate setup set earlier can be used for the further runs. To do this:

- click the Select Existing... button in the Run Setup window of the Protocol tab. Select the needed file with the amplification program in the Select Protocol window. Click Open.
- go to the Plate tab in the Run Setup window. Click the Select Existing... button. Select the needed file with the plate setup in the Select Plate window. Click Open. Click the Edit selected button to edit the plate setup.


## Data analysis

The obtained results are analyzed by the software of the CFX96 instrument. The results are interpreted according to the crossing (or not-crossing) of the S-shaped (sigmoid) fluorescence curve with the threshold line set at the specific level, that corresponds to the presence (or absence) of the $C t$ (threshold cycle) value in the corresponding column of the results table.

1. Start the software and open the saved file with data of the analysis. To do this, select File in the menu, then Open and Data file and select the needed file.
2. The fluorescence curves, the tube order in the plate and the table with the Ct values are represented in the Data Analysis window of the Quantification tab.
Check the correctness of threshold line automatic choice for each channel. The threshold line is to cross only with S-shaped (sigmoid) curves describing the accumulation of the signal detecting positive samples and controls. The threshold line is not to cross the base line. If it happens, it is necessary to set the threshold line level for each channel manually. To do this, tick the Log Scale item (logarithmic scale selection) and set (with the left mouse button) the threshold line at the level where the fluorescence curves have a linear character and do not cross with the curves of the negative samples. As a rule, the threshold line is set at the level of $10-20 \%$ of maximum fluorescence obtained for the Positive control in the last amplification cycle. Make sure that the fluorescence curve of the Positive control has the typical exponential growth of fluorescence. To select the curve of $\mathrm{C}+$ sample (or another one appropriate sample), set the cursor to the plate setup or to the results grid.
3. Click the View/Edit Plate... button on the toolbar and set the samples names in the opened window.
4. To continue work with data, the Ct values for each channel can be copied to the Excel from the results grid of the instrument software. To generate report of the run in .pdf format it is necessary to select the Tools on the toolbar, then select Reports... Save the generated report: select File and then Save as, name the file and click Save.

## Results interpretation

1. Click the right mouse button at the A1 position of appeared results grid. Due to the structure of this file, the results for Cy5, FAM, a then for HEX and ROX channels successively are shown.
2. Open the program for results interpretation in the Microsoft ${ }^{\circledR}$ Excel format (AmpliSens

FRT HR HPV SCREEN Quant 2x Results Matrix for PCR kit variant screen-titre-

REF R-V31-T-2x(RG,iQ,SC)-CE, REF R-V31-T-4x(RG,iQ,Mx)-CE / VER: 05.12.19-25.03.21 / Page 47 of 49

FRT 2x or AmpliSens FRT HR HPV SCREEN Quant 4x Results Matrix for PCR kit variant screen-titre-FRT $4 x$ ) provided on the disc. Agree to enable the macro.

Note - If macro is not enabled (the Results button is not activated) when an Excel document is opened, security level must be changed. To do this, select Service>Macro>Security and set the middle security level.
3. Paste data in the results grid of the software in the columns with $C t$ values for appropriate channels.
4. Save the Microsoft ${ }^{\circledR}$ Excel file under another name.
5. Click the Results button.
6. In the Results column the phylogenetic groups of HPV detected in the samples will appear, as well as the result: positive (pos), negative (neg), weakly positive (weak), invalid (N/V).
The interpretation of the test samples is to be carried out in accordance with the Instruction Manual.

## Principles which underlie automatic data analysis:

Signal in a tube in the channel is considered to be positive, if corresponding fluorescence accumulation curve cross the threshold line. The signal is characterized by the threshold cycle, the cycle corresponding to the crossing of the fluorescence curve and the threshold line. The Ct values (as well as their absence or presence) are analyzed by the software of automated recording of results of analysis.

List of Changes Made in the Guidelines

| VER | Location of <br> changes | Essence of changes |
| :---: | :---: | :--- |
| 03.07 .13 <br> FN | Footer | Catalogue numbers REF R-V31-T-2x(RG,iQ,SC)-CE-B, <br> REF R-V31-T-4x(RG,iQ,Mx)-CE-B were deleted |
| 02.04 .14 <br> SA | Cover page | Address of European representative was added |
| 16.08 .16 <br> ME | Text | Corrections according to the template. The amplification <br> programs, possible problems and errors, examples of <br> obtained results were added |
| 02.03 .18 <br> PM | Amplification and <br> data analysis using <br> CFX96 (Bio-Rad, <br> USA) | The section was added |
| 28.12 .20 <br> MM | Through the text | The symbol $\quad$ Cover page |

